首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate second-term asymptotic behavior of boundary blow-up solutions to the problems Δu=b(x)f(u), xΩ, subject to the singular boundary condition u(x)=, in a bounded smooth domain ΩRN. b(x) is a non-negative weight function. The nonlinearly f is regularly varying at infinity with index ρ>1 (that is limuf(ξu)/f(u)=ξρ for every ξ>0) and the mapping f(u)/u is increasing on (0,+). The main results show how the mean curvature of the boundary Ω appears in the asymptotic expansion of the solution u(x). Our analysis relies on suitable upper and lower solutions and the Karamata regular variation theory.  相似文献   

2.
By Karamata regular variation theory and perturbation method, we show the exact asymptotical behaviour of solutions near the boundary to nonlinear elliptic problems Δu±q|∇u|=b(x)g(u), u>0 in Ω, u|Ω=+∞, where Ω is a bounded domain with smooth boundary in RN, q?0, gC1[0,∞),g(0)=0, g is regularly varying at infinity with index ρ with ρ>0 and b is nonnegative nontrivial in Ω, which may be vanishing on the boundary.  相似文献   

3.
We classify all the possible asymptotic behavior at the origin for positive solutions of quasilinear elliptic equations of the form div(|∇u|p−2u)=b(x)h(u) in Ω?{0}, where 1<p?N and Ω is an open subset of RN with 0∈Ω. Our main result provides a sharp extension of a well-known theorem of Friedman and Véron for h(u)=uq and b(x)≡1, and a recent result of the authors for p=2 and b(x)≡1. We assume that the function h is regularly varying at ∞ with index q (that is, limt→∞h(λt)/h(t)=λq for every λ>0) and the weight function b(x) behaves near the origin as a function b0(|x|) varying regularly at zero with index θ greater than −p. This condition includes b(x)=θ|x| and some of its perturbations, for instance, b(x)=θ|x|m(−log|x|) for any mR. Our approach makes use of the theory of regular variation and a new perturbation method for constructing sub- and super-solutions.  相似文献   

4.
We introduce a notion of entropy solution for a scalar conservation law on a bounded domain with nonhomogeneous boundary condition: ut+divΦ(u)=f on Q=(0,TΩ, u(0,⋅)=u0 on Ω and “u=a on some part of the boundary (0,T)×∂Ω.” Existence and uniqueness of the entropy solution is established for any ΦC(R;RN), u0L(Ω), fL(Q), aL((0,T)×∂Ω). In the L1-setting, a corresponding result is proved for the more general notion of renormalised entropy solution.  相似文献   

5.
In this paper we consider the semilinear elliptic problem Δu=a(x)f(u), u?0 in Ω, with the boundary blow-up condition u|Ω=+∞, where Ω is a bounded domain in RN(N?2), a(x)∈C(Ω) may blow up on ∂Ω and f is assumed to satisfy (f1) and (f2) below which include the sublinear case f(u)=um, m∈(0,1). For the radial case that Ω=B (the unit ball) and a(x) is radial, we show that a solution exists if and only if . For Ω a general domain, we obtain an optimal nonexistence result. The existence for nonradial solutions is also studied by using sub-supersolution method.  相似文献   

6.
We prove finite time extinction of the solution of the equation ut−Δu+χ{u>0}(uβλf(u))=0 in Ω×(0,∞) with boundary data u(x,t)=0 on ∂Ω×(0,∞) and initial condition u(x,0)=u0(x) in Ω, where ΩRN is a bounded smooth domain, 0<β<1 and λ>0 is a parameter. For every small enough λ>0 there exists a time t0>0 such that the solution is identically equal to zero.  相似文献   

7.
Let ΩRN(N?3) be a bounded domain with smooth boundary. We show the asymptotic behavior of boundary blowup solutions to non-linear elliptic equation Δu±|u|q=b(x)f(u) in Ω, subject to the singular boundary condition u(x)= as dist(x,Ω)→0,f is Γ-varying at . Our analysis is based on the Karamata regular variation theory combined with the method of lower and supper solution.  相似文献   

8.
By Karamata regular variation theory and constructing comparison functions, we derive that the boundary behaviour of the unique solution to a singular Dirichlet problem −Δu=b(x)g(u)+λq|∇u|, u>0, xΩ, u|Ω=0, which is independent of λq|∇uλ|, where Ω is a bounded domain with smooth boundary in RN, λR, q∈(0,2], lims0+g(s)=+∞, and b is non-negative on Ω, which may be vanishing on the boundary.  相似文献   

9.
By Karamata regular varying theory, a perturbed argument and constructing comparison functions, we show the exact asymptotic behaviour of the unique solution near the boundary to a singular Dirichlet problem −Δu=b(x)g(u)+λf(u), u>0, xΩ, u|Ω=0, which is independent on λf(u), and we also show the existence and uniqueness of solutions to the problem, where Ω is a bounded domain with smooth boundary in RN, λ>0, gC1((0,∞),(0,∞)) and there exists γ>1 such that , ∀ξ>0, , the function is decreasing on (0,∞) for some s0>0, and b is nonnegative nontrivial on Ω, which may be vanishing on the boundary.  相似文献   

10.
For the problem given by uτ=(ξrumuξ)ξ/ξr+f(u) for 0<ξ<a, 0<τ<Λ, u(ξ,0)=u0(ξ) for 0≤ξa, and u(0,τ)=0=u(a,τ) for 0<τ<Λ, where a and m are positive constants, r is a constant less than 1, f(u) is a positive function such that limucf(u)= for some positive constant c, and u0(ξ) is a given function satisfying u0(0)=0=u0(a), this paper studies quenching of the solution u.  相似文献   

11.
This paper deals with a class of degenerate quasilinear elliptic equations of the form −div(a(x,u,u)=g−div(f), where a(x,u,u) is allowed to be degenerate with the unknown u. We prove existence of bounded solutions under some hypothesis on f and g. Moreover we prove that there exists a renormalized solution in the case where gL1(Ω) and f∈(Lp(Ω))N.  相似文献   

12.
In this paper we consider a semilinear parabolic equation ut=Δuc(x,t)up for (x,t)∈Ω×(0,) with nonlinear and nonlocal boundary condition uΩ×(0,)=∫Ωk(x,y,t)uldy and nonnegative initial data where p>0 and l>0. We prove some global existence results. Criteria on this problem which determine whether the solutions blow up in finite time for large or for all nontrivial initial data are also given.  相似文献   

13.
The existence of local (in time) solutions of the initial-boundary value problem for the following degenerate parabolic equation: ut(x,t)−Δpu(x,t)−|u|q−2u(x,t)=f(x,t), (x,t)∈Ω×(0,T), where 2?p<q<+∞, Ω is a bounded domain in RN, is given and Δp denotes the so-called p-Laplacian defined by Δpu:=∇⋅(|∇u|p−2u), with initial data u0Lr(Ω) is proved under r>N(qp)/p without imposing any smallness on u0 and f. To this end, the above problem is reduced into the Cauchy problem for an evolution equation governed by the difference of two subdifferential operators in a reflexive Banach space, and the theory of subdifferential operators and potential well method are employed to establish energy estimates. Particularly, Lr-estimates of solutions play a crucial role to construct a time-local solution and reveal the dependence of the time interval [0,T0] in which the problem admits a solution. More precisely, T0 depends only on Lr|u0| and f.  相似文献   

14.
The aim of this paper is to investigate the behaviour as t of solutions to the Cauchy problem ut−△utvu−(b,u)=F(u),u(x,0)=u0(x), where v>0 is a fixed constant, t≥0, xΩ, Ω is a bounded domain in Rn. We will first establish an a priori estimate. Then, we establish the global existence, uniqueness and continuous dependence of the weak solution for the Sobolev-Galpern type equation with the Dirichlet boundary.  相似文献   

15.
The purpose of this paper is to prove the existence of a unique classical solution u(x) to the quasilinear elliptic equation −∇⋅(a(u)∇u)+v⋅∇u=f, where u(x0)=u0 at x0Ω and where n⋅∇u=g on the boundary ∂Ω. We prove that if the functions a, f, v, g satisfy certain conditions, then a unique classical solution u(x) exists. Applications include stationary heat/diffusion problems with convection and with a source/sink, where the value of the solution is known at a spatial location x0Ω, and where n⋅∇u is known on the boundary.  相似文献   

16.
We study the nonlinear elliptic problem −Δu=ρ(x)f(u) in RN (N?3), lim|x|→∞u(x)=?, where ??0 is a real number, ρ(x) is a nonnegative potential belonging to a certain Kato class, and f(u) has a sublinear growth. We distinguish the cases ?>0 and ?=0 and prove existence and uniqueness results if the potential ρ(x) decays fast enough at infinity. Our arguments rely on comparison techniques and on a theorem of Brezis and Oswald for sublinear elliptic equations.  相似文献   

17.
In this paper we analyze the second expansion of the unique solution near the boundary to the singular Dirichlet problem −Δu=b(x)g(u), u>0, xΩ, u|Ω=0, where Ω is a bounded domain with smooth boundary in RN, gC1((0,∞),(0,∞)), g is decreasing on (0,∞) with and g is normalised regularly varying at zero with index −γ (γ>1), , is positive in Ω, may be vanishing on the boundary.  相似文献   

18.
The structure of positive boundary blow-up solutions to quasi-linear elliptic problems of the form −Δpu=λf(u), u=∞ on ∂Ω, 1<p<∞, is studied in a bounded smooth domain , for a class of nonlinearities fC1((0,∞)?{z2})∩C0[0,∞) satisfying f(0)=f(z1)=f(z2)=0 with 0<z1<z2, f<0 in (0,z1)∪(z2,∞), f>0 in (z1,z2). Large, small and intermediate solutions are obtained for λ sufficiently large. It is known from Part I (see Structure of boundary blow-up solutions for quasilinear elliptic problems, part (I): large and small solutions, preprint), that the large solution is the unique large solution to the problem. We will see that the small solution is also the unique small solution to the problem while there are infinitely many intermediate solutions. Our results are new even for the case p=2.  相似文献   

19.
In this paper, we study the existence of multiple positive solutions to some Hamiltonian elliptic systems −Δv=λu+up+εf(x), −Δu=μv+vq+δg(x) in Ω;u,v>0 in Ω; u=v=0 on ∂Ω, where Ω is a bounded domain in RN (N?3); 0?f, g∈L∞(Ω); 1/(p+1)+1/(q+1)=(N−2)/N, p,q>1; λ,μ>0. Using sub- and supersolution method and based on an adaptation of the dual variational approach, we prove the existence of at least two nontrivial positive solutions for all λ,μ∈(0,λ1) and ε,δ∈(0,δ0), where λ1 is the first eigenvalue of the Laplace operator −Δ with zero Dirichlet boundary conditions and δ0 is a positive number.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号