首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
We consider a parabolic partial differential equation ut = uxx + f(u), where ? ∞ < x < + ∞ and 0 < t < + ∞. Under suitable hypotheses pertaining to f, we exhibit a class of initial data φ(x), ? ∞ < x < + ∞, for which the corresponding solutions u(x, t) approach zero as t → + ∞. This convergence is uniform with respect to x on any compact subinterval of the real axis.  相似文献   

2.
For the nonlinear wave equationu tt -Nu +G(t,u, u t ) = ? in Hilbert space, with associated homogeneous initial data, we show how ana priori bound of the form ∫ 0 T G(τ,u, u τ)∥2 ≤ κ ∫ 0 T ∥?(τ)∥2 leads to upper and lower bounds for ∥u∥ in terms of ∥?∥. An application to nonlinear elastodynamics is presented.  相似文献   

3.
In the first part, we investigate the singular BVP \(\tfrac{d} {{dt}}^c D^\alpha u + (a/t)^c D^\alpha u = \mathcal{H}u\) , u(0) = A, u(1) = B, c D α u(t)| t=0 = 0, where \(\mathcal{H}\) is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems \(\tfrac{d} {{dt}}^c D^{\alpha _n } u + (a/t)^c D^{\alpha _n } u = f(t,u,^c D^{\beta _n } u)\) , u(0) = A, u(1) = B, \(\left. {^c D^{\alpha _n } u(t)} \right|_{t = 0} = 0\) where a < 0, 0 < β n α n < 1, lim n→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.  相似文献   

4.
The non-characteristic Cauchy problem for the heat equation uxx(x,t) = u1(x,t), 0 ? x ? 1, ? ∞ < t < ∞, u(0,t) = φ(t), ux(0, t) = ψ(t), ? ∞ < t < ∞ is regularizèd when approximate expressions for φ and ψ are given. Properties of the exact solution are used to obtain an explicit stability estimate.  相似文献   

5.
Consider the n-dimensional nonautonomous system ?(t) = A(t)G(x(t)) ? B(t)F(x(t ? τ(t))) Let u = (u 1,…,u n ), $f^{i}_{0}={\rm lim}_{\|{\rm u}\|\rightarrow 0}{f^{i}(\rm u)\over \|u\|}$ , $f^{i}_{\infty}={\rm lim}_{\|{\rm u}\|\rightarrow \infty}{f^{i}(\rm u)\over \|u\|}$ , i = l,…,n, F = (f 1…,f n ), ${\rm F_{0}}={\rm max}_{i=1,\ldots,n}{f^{i}_{0}}$ and ${\rm F_{\infty}}={\rm max}_{i=1,\ldots,n}{f^{i}_{\infty}}$ . Under some quite general conditions, we prove that either F0 = 0 and F = ∞, or F0 = ∞ and F = 0, guarantee the existence of positive periodic solutions for the system for all λ > 0. Furthermore, we show that F0 = F = 0, or F = F = ∞ guarantee the multiplicity of positive periodic solutions for the system for sufficiently large, or small λ, respectively. We also establish the nonexistence of the system when either F0 and F > 0, or F0 and F, < for sufficiently large, or small λ, respectively. We shall use fixed point theorems in a cone.  相似文献   

6.
Let n ≥ 3, 0 < m ≤ (n ? 2)/n, p > max(1, (1 ? m)n/2), and ${0 \le u_0 \in L_{loc}^p(\mathbb{R}^n)}$ satisfy ${{\rm lim \, inf}_{R\to\infty}R^{-n+\frac{2}{1-m}} \int_{|x|\le R}u_0\,dx = \infty}$ . We prove the existence of unique global classical solution of u t = Δu m , u > 0, in ${\mathbb{R}^n \times (0, \infty), u(x, 0) = u_0(x)}$ in ${\mathbb{R}^n}$ . If in addition 0 < m < (n ? 2)/n and u 0(x) ≈ A|x|?q as |x| → ∞ for some constants A > 0, qn/p, we prove that there exist constants α, β, such that the function v(x, t) = t α u(t β x, t) converges uniformly on every compact subset of ${\mathbb{R}^n}$ to the self-similar solution ψ(x, 1) of the equation with ψ(x, 0) = A|x|?q as t → ∞. Note that when m = (n ? 2)/(n + 2), n ≥ 3, if ${g_{ij} = u^{\frac{4}{n+2}}\delta_{ij}}$ is a metric on ${\mathbb{R}^n}$ that evolves by the Yamabe flow ?g ij /?t = ?Rg ij with u(x, 0) = u 0(x) in ${\mathbb{R}^n}$ where R is the scalar curvature, then u(x, t) is a global solution of the above fast diffusion equation.  相似文献   

7.
Consider the renewal equation in the form (1) u(t) = g(t) + ∝ot u(t ? τ) ?(τ) dτ, where ?(t) is a probability density on [0, ∞) and limt → ∞g(t) = g0. Asymptotic solutions of (1) are given in the case when f(t) has no expectation, i.e., 0 t?(t)dt = ∞. These results complement the classical theorem of Feller under the assumption that f(t) possesses finite expectation.  相似文献   

8.
We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations
*20c Da u(t) + l[ f( t,u(t) ) + q(t) ] = 0,    0 < t < 1, u(0) = 0,    u(1) = bu(h), \begin{array}{*{20}{c}} {{{\mathbf{D}}^\alpha }u(t) + {{\lambda }}\left[ {f\left( {t,u(t)} \right) + q(t)} \right] = 0,\quad 0 < t < 1,} \\ {u(0) = 0,\quad u(1) = \beta u(\eta ),} \\ \end{array}  相似文献   

9.
The singularly perturbed parabolic equation ?u t + ε2Δu ? f(u, x, ε) = 0, xD ? ?2, t > 0 with Robin conditions on the boundary of D is considered. The asymptotic stability as t → ∞ and the global domain of attraction are analyzed for the stationary solution whose limit as ε → 0 is a nonsmooth solution to the reduced equation f(u, x, 0) = 0 that consists of two intersecting roots of this equation.  相似文献   

10.
Numerical approximation of the solution of the Cauchy problem for the linear parabolic partial differential equation is considered. The problem: (p(x)ux)x ? q(x)u = p(x)ut, 0 < x < 1,0 < t? T; u(0, t) = ?1(t), 0 < t ? T; u(1,t) = ?2(t), 0 < t ? T; p(0) ux(0, t) = g(t), 0 < t0 ? t ? T, is ill-posed in the sense of Hadamard. Complex variable and Dirichlet series techniques are used to establish Hölder continuous dependence of the solution upon the data under the additional assumption of a known uniform bound for ¦ u(x, t)¦ when 0 ? x ? 1 and 0 ? t ? T. Numerical results are obtained for the problem where the data ?1, ?2 and g are known only approximately.  相似文献   

11.
In this paper, we consider the following nonlinear fractional three-point boundary-value problem:
*20c D0 + a u(t) + f( t,u(t) ) = 0,    0 < t < 1, u(0) = u¢(0) = 0,    u¢(1) = ò0h u(s)\textds, \begin{array}{*{20}{c}} {D_{0 + }^\alpha u(t) + f\left( {t,u(t)} \right) = 0,\,\,\,\,0 < t < 1,} \\ {u(0) = u'(0) = 0,\,\,\,\,u'(1) = \int\limits_0^\eta {u(s){\text{d}}s,} } \\ \end{array}  相似文献   

12.
The initial value problem on [?R, R] is considered: ut(t, x) = uxx(t, x) + u(t, x)γu(t, ±R) = 0u(0, x) = ?(x), where ? ? 0 and γ is a fixed large number. It is known that for some initial values ? the solution u(t, x) exists only up to some finite time T, and that ∥u(t, ·)∥ → ∞ as tT. For the specific initial value ? = , where ψ ? 0, ψxx + ψγ = 0, ψR) = 0, k is sufficiently large, it is shown that if x ≠ 0, then limtTu(t, x) and limtTux(t, x) exist and are finite. In other words, blow-up occurs only at the point x = 0.  相似文献   

13.
We consider the class of equations ut=f(uxx, ux, u) under the restriction that for all a,b,c. We first consider this equation over the unbounded domain ? ∞ < x < + ∞, and we show that very nearly every bounded nonmonotonic solution of the form u(t, x)=?(x?ct) is unstable to all nonnegative and all nonpositive perturbations. We then extend these results to nonmonotonic plane wave solutions u(t, x, y)=?(x?ct) of ut = F(uxx, uxy, ux, uy, u). Finally, we consider the class of equations ut=f(uxx, ux, u) over the bounded domain 0 < x < 1 with the boundary conditions u(t, x)=A at x=0 and u(t, x)=B at x=1, and we find the stability of all steady solutions u(t, x)=?(x).  相似文献   

14.
It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f’(u) > 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.  相似文献   

15.
Let {W i (t), t ∈ ?+}, i = 1, 2, be two Wiener processes, and let W 3 = {W 3(t), t? + 2 } be a two-parameter Brownian sheet, all three processes being mutually independent. We derive upper and lower bounds for the boundary noncrossing probability P f = P{W 1(t 1) + W 2(t 2) + W 3(t) + f(t) ≤ u(t), t? + 2 }, where f, u : ? + 2 ? are two general measurable functions. We further show that, for large trend functions γf > 0, asymptotically, as γ → ∞, P γf is equivalent to \( {P}_{\gamma}\underset{\bar{\mkern6mu}}{{}_f} \) , where \( \underset{\bar{\mkern6mu}}{f} \) is the projection of f onto some closed convex set of the reproducing kernel Hilbert space of the field W(t) = W 1(t 1) + W 2(t 2) + W 3(t). It turns out that our approach is also applicable for the additive Brownian pillow.  相似文献   

16.
In this paper we study the boundary limit properties of harmonic functions on ℝ+×K, the solutions u(t,x) to the Poisson equation
\frac?2 u?t2 + Du = 0,\frac{\partial^2 u}{\partial t^2} + \Delta u = 0,  相似文献   

17.
We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ${u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2}We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ut = (un)xx + lf(u)/(ò-11 f(u)dx)2{u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2} with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),−f ′ (s) > 0 for s ≥ 0 and s n-1 f(s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter λ, say λ*, such that for λ > λ* the solution u = u(x, t; λ) blows up globally in finite time, while for λ ≥ λ* the corresponding steady-state problem does not have any solution. For 0 < λ < λ* there exists a unique steady-state solution w = w(x; λ) while u = u(x, t; λ) is global in time and converges to w as t → ∞. Here we show the global grow-up of critical solution u* =  u(x, t; λ*) (u* (x, t) → ∞, as t → ∞ for all x ? (-1,1){x\in(-1,1)}.  相似文献   

18.
For the Cauchy problem, ut = uxx, 0 < x < 1, 0 < t ? T, u(0, t) = f(t), 0 < t ? T, ux(0, t) = g(t), 0 < t ? T, a direct numerical procedure involving the elementary solution of υt = υxx, 0 < x, 0 < t ? T, υx(0, t) = g(t), 0 < t ? T, υ(x, 0) = 0, 0 < x and a Taylor's series computed from f(t) ? υ(0, t) is studied. Continuous dependence better than any power of logarithmic is obtained. Some numerical results are presented.  相似文献   

19.
The purpose of this paper is to prove the existence of a solution for a nonlinear parabolic equation in the form ut - div(a(t, x, u, Du)) = H(t, x, u, Du) - div(g(t, x)) in QT =]0,T[×Ω, Ω ⊂ RN, with an initial condition u(0) = u0, where u0 is not bounded, |H(t,x, u, ξ)⩽ β|ξ|p + f(t,x) + βeλ1|u|f, |g|p/(p-1) ∈ Lr(QT) for some r = r{N) ⩾ 1, and - div(a(t,x,u, Du)) is the usual Leray-Lions operator.  相似文献   

20.
We study the initial boundary value problem for the nonlinear wave equation: (*) $$\left\{ \begin{gathered} \partial _t^2 u - (\partial _r^2 + \frac{{n - 1}}{r}\partial _r )u = F(\partial _t u,\partial _t^2 u),t \in \mathbb{R}^ + ,R< r< \infty , \hfill \\ u(0,r) = \in _0 u_0 (r),\partial _t u(0,r) = \in _0 u_1 (r),R< r< \infty , \hfill \\ u(t,R) = 0,t \in \mathbb{R}^ + , \hfill \\ \end{gathered} \right.$$ wheren=4,5,u 0,u 1 are real valued functions and ∈0 is a sufficiently small positive constant. In this paper we shall show small solutions to (*) exist globally in time under the condition that the nonlinear termF:?2→? is quadratic with respect to ? t u and ? t 2 u.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号