首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we examine the two-dimensional variable-sized bin packing problem (2DVSBPP), where the task is to pack all given rectangles into bins of various sizes such that the total area of the used bins is minimized. We partition the search space of the 2DVSBPP into sets and impose an order on the sets, and then use a goal-driven approach to take advantage of the special structure of this partitioned solution space. Since the 2DVSBPP is a generalization of the two-dimensional bin packing problem (2DBPP), our approach can be adapted to the 2DBPP with minimal changes. Computational experiments on the standard benchmark data for both the 2DVSBPP and 2DBPP shows that our approach is more effective than existing approaches in literature.  相似文献   

2.
Minimum bounded edge-partition divides the edge set of a tree into the minimum number of disjoint connected components given a maximum weight for any component. It is an adaptation of the uniform edge-partition of a tree. An optimization algorithm is developed for this NP-hard problem, based on repeated bin packing of inter-related instances. The algorithm has linear running time for the class of ‘balanced trees’ common for the stochastic programming application which motivated investigation of this problem.Fast 2-approximation algorithms are formed for general instances by replacing the optimal bin packing with almost any bin packing heuristic. The asymptotic worst-case ratio of these approximation algorithms is never better than the absolute worst-case ratio of the bin packing heuristic used.  相似文献   

3.
现实物流活动中大量存在的食品、药品和危险品等货物的分组包装问题属于带冲突关系的装箱问题(BPPC),其优化目标是在满足货物间冲突限制的前提下完成装箱操作,并最小化使用货箱的数量。本文从实际需求出发,基于货物之间的冲突关系、装箱顺序和货箱容量等约束建立相应的数学规划模型;随后设计了求解BPPC问题的启发式算法,算法通过迭代求解最大团结构实现货物间冲突关系的消去,根据当前货物最大团采用改进降序首次适应算法(FFD)完成货物装箱操作,并通过“洗牌”策略对已有装箱方案进行局部优化;最后,针对Iori算例数据,将以上算法与基于图着色的启发式算法进行比较分析,结果表明,本文算法是求解BPPC问题更为有效的方法。  相似文献   

4.
This paper studies a new practical problem which can be decomposed into three three-dimensional packing problems: three-dimensional irregular packing with variable-size cartons problem, three-dimensional variable-size bin packing problem, and the single container loading problem. Since the three sub-problems are NP-hard, searching a good solution becomes more difficult. In this paper, mathematical models of each sub-problem are developed and three-stage heuristic algorithms are proposed to solve this new problem. Experiments are conducted with random instances generated by real-life case. Computational results indicate that the proposed algorithm is efficient and can yield satisfactory results.  相似文献   

5.
带有冲突关系装箱问题的优化目标是在满足货物冲突关系的前提下,使用数量最少的货箱完成货物装箱的目的。本文分析了冲突装箱问题的数学模型,提出了基于图着色模型的启发式算法进行求解。首先,使用冲突图来描述货物之间的冲突关系;其次,基于冲突图,采取图着色的方式将货物进行分组,并且组内的货物之间不存在冲突关系;最后,采取改进FFD算法对每组的货物进行装箱操作。实验表明,本文提出的启发式算法能够快速有效地找到问题的可行解,为此类装箱问题的求解提供了新思路。  相似文献   

6.
The three-dimensional bin packing problem consists of packing a set of boxes into the minimum number of bins. In this paper we propose a new GRASP algorithm for solving three-dimensional bin packing problems which can also be directly applied to the two-dimensional case. The constructive phase is based on a maximal-space heuristic developed for the container loading problem. In the improvement phase, several new moves are designed and combined in a VND structure. The resulting hybrid GRASP/VND algorithm is simple and quite fast and the extensive computational results on test instances from the literature show that the quality of the solutions is equal to or better than that obtained by the best existing heuristic procedures.  相似文献   

7.
The multi-dimensional orthogonal packing problem (OPP) is a well studied decisional problem. Given a set of items with rectangular shapes, the problem is to decide whether there is a non-overlapping packing of these items in a rectangular bin. The rotation of items is not allowed. A powerful caracterization of packing configurations by means of interval graphs was recently introduced. In this paper, we propose a new algorithm using consecutive ones matrices as data structure. This new algorithm is then used to solve the two-dimensional orthogonal knapsack problem. Computational results are reported, which show its effectiveness.  相似文献   

8.
This paper addresses the problem of routing and wavelength assignment (RWA) of static lightpath requests in wavelength routed optical networks. The objective is to minimize the number of wavelengths used. This problem has been shown to be NP-complete and several heuristic algorithms have been developed to solve it. We suggest very efficient, yet simple, heuristic algorithms for the RWA problem developed by applying classical bin packing algorithms. The heuristics were tested on a series of large random networks and compared with an efficient existing algorithm for the same problem. Results indicate that the proposed algorithms yield solutions significantly superior in quality, not only with respect to the number of wavelength used, but also with respect to the physical length of the established lightpaths. Comparison with lower bounds shows that the proposed heuristics obtain optimal or near optimal solutions in many cases.  相似文献   

9.
This paper proposes an adaptation, to the two-dimensional irregular bin packing problem of the Djang and Finch heuristic (DJD), originally designed for the one-dimensional bin packing problem. In the two-dimensional case, not only is it the case that the piece’s size is important but its shape also has a significant influence. Therefore, DJD as a selection heuristic has to be paired with a placement heuristic to completely construct a solution to the underlying packing problem. A successful adaptation of the DJD requires a routine to reduce computational costs, which is also proposed and successfully tested in this paper. Results, on a wide variety of instance types with convex polygons, are found to be significantly better than those produced by more conventional selection heuristics.  相似文献   

10.
This paper studies a variant of the three-dimensional bin packing problem (3D-BPP), where the bin height can be adjusted to the cartons it packs. The bins and cartons to be packed are assumed rectangular in shape. The cartons are allowed to be rotated into any one of the six positions that keep the carton edges parallel to the bin edges. This greatly increases the difficulty of finding a good solution since the search space expands significantly comparing to the 3D-BPP where the cartons have fixed orientations. A mathematical (mixed integer programming) approach is modified based on [Chen, C. S., Lee, S. M., Shen, Q. S., 1995. An analytical model for the container loading problem. European Journal of Operational Research 80 (1), 68–76] and numerical experiments indicate that the mathematical approach is not suitable for the variable bin height 3D-BPP. A special bin packing algorithm based on packing index is designed to utilize the special problem feature and is used as a building block for a genetic algorithm designed for the 3D-BPP. The paper also investigates the situation where more than one type of bin are used and provides a heuristic for packing a batch of cartons using the genetic algorithm. Numerical experiments show that our proposed method yields quick and satisfactory results when benchmarked against the actual packing practice and the MIP model with the latest version of CPLEX.  相似文献   

11.
超尺寸物品装箱问题及其算法   总被引:3,自引:0,他引:3  
本文探讨一类新装箱问题-超尺寸物品装箱问题。针对实际解决该问题的两涉法,我们提出了一个评价效率更高的目标函数,证明了在此目标函数下两步法的渐近最坏比不小于2,并给出了渐近量坏比与拆分次数的关系。最后本文提出了一种不同于两步法的新在线算法MA,证明了在新目标函数下其渐近最坏比不超过7/4。  相似文献   

12.
We address a problem of vehicle routing that arises in picking up and delivering full container load from/to an intermodal terminal. The substantial cost and time savings are expected by efficient linkage between pickup and delivery tasks, if the time of tasks and the suitability of containers for cargo allow. As this problem is NP-hard, we develop a subgradient heuristic based on a Lagrangian relaxation which enables us to identify a near optimal solution. The heuristic consists of two sub-problems: the classical assignment problem and the generalized assignment problem. As generalized assignment problem is also NP-hard, we employ an efficient solution procedure for a bin packing based problem, which replaces the generalized assignment problem. The heuristic procedure is tested on a wide variety of problem examples. The test results demonstrate that the procedure developed here can efficiently solve large instances of the problem.  相似文献   

13.
We consider two types of orthogonal, oriented, rectangular, two-dimensional packing problems. The first is the strip packing problem, for which four new and improved level-packing algorithms are presented. Two of these algorithms guarantee a packing that may be disentangled by guillotine cuts. These are combined with a two-stage heuristic designed to find a solution to the variable-sized bin packing problem, where the aim is to pack all items into bins so as to minimise the packing area. This heuristic packs the levels of a solution to the strip packing problem into large bins and then attempts to repack the items in those bins into smaller bins in order to reduce wasted space. The results of the algorithms are compared to those of seven level-packing heuristics from the literature by means of a large number of strip-packing benchmark instances. It is found that the new algorithms are an improvement over known level-packing heuristics for the strip packing problem. The advancements made by the new and improved algorithms are limited in terms of utilised space when applied to the variable-sized bin packing problem. However, they do provide results faster than many existing algorithms.  相似文献   

14.
We consider bin-packing variations related to the well-studied problem of maximizing the total number of pieces packed into a fixed set of bins. We show that, when the objective is to minimize the total number of pieces packed subject to the constraint that no unpacked piece will fit, no polynomial-time relative approximation algorithm exists (unless, of course,P=NP). That is, we prove that it isNP-hard to guarantee packing no more than a constant multiple of the optimal number of pieces, for any constant. This appears to be the first bin-packing problem for which this property has been demonstrated. Furthermore, this result also holds for the allied packing variant which seeks to minimize the maximum number of pieces packed in any single bin. We find the situation to be markedly better for the problem of maximizing the minimum number of pieces in any bin. If all bins possess the same capacity, we prove that the familiar SPF rule is an absolute approximation algorithm with additive constant 1, and can therefore be regarded as a best possible heuristic. For the more general and difficult case in which bin capacities may differ, it turns out that SPF fails to qualify as even a relative approximation algorithm. However, we devise an implementation of the well-known FFD heuristic, which we show to be a relative approximation algorithm, yielding a worst-case performance ratio of 1/2 with additive constant 0. Moreover, we prove that (unlessP=NP) no polynomial-time algorithm can guarantee a higher ratio without sacrificing the additive constant.This author's research is supported in part by the National Science Foundation under grants ECS-8403859 and MIP-8603879.  相似文献   

15.
约束装箱问题的混合遗传算法求解   总被引:12,自引:1,他引:11  
本将最佳适应法和遗传算法相结合,提出了一种新的启发式混合遗传算法对具有时间约束的装箱问题进行求解,给出了具体的算法步骤,试算结果表明基于启发式算法的混合遗传算法适合于求解各种约束条件下的大规模装箱问题。  相似文献   

16.
Following the work of Anily et?al., we consider a variant of bin packing called bin packing with general cost structures (GCBP) and design an asymptotic fully polynomial time approximation scheme (AFPTAS) for this problem. In the classic bin packing problem, a set of one-dimensional items is to be assigned to subsets of total size at most 1, that is, to be packed into unit sized bins. However, in GCBP, the cost of a bin is not 1 as in classic bin packing, but it is a non-decreasing and concave function of the number of items packed in it, where the cost of an empty bin is zero. The construction of the AFPTAS requires novel techniques for dealing with small items, which are developed in this work. In addition, we develop a fast approximation algorithm which acts identically for all non-decreasing and concave functions, and has an asymptotic approximation ratio of 1.5 for all functions simultaneously.  相似文献   

17.
This article presents a vehicle routing problem with time windows, multiple trips, a limited number of vehicles and loading constraints for circular objects. This is a real problem experienced by a home delivery service company. A linear model is proposed to handle small problems and a two-step heuristic method to solve real size instances: the first step builds an initial solution through the modification of the Solomon I1 sequential insertion heuristic, and the second step improves the initial solution through the Tabu search algorithm proposed; in both steps, the problems related to circle packing with different sizes and bin packing are solved jointly with the use of heuristics. Finally, the computing results for two different sets of instances are presented.  相似文献   

18.
In this paper, we study an online multi-dimensional bin packing problem where all items are hypercubes. Hypercubes of different size arrive one by one, and we are asked to pack each of them without knowledge of the next pieces so that the number of bins used is minimized. Based on the techniques from one dimensional bin packing and specifically the algorithm Super Harmonic by Seiden (J ACM 49:640–671, 2002), we extend the framework for online bin packing problems developed by Seiden to the hypercube packing problem. To the best of our knowledge, this is the first paper to apply a version of Super Harmonic (and not of the Improved Harmonic algorithm) for online square packing, although the Super Harmonic has been already known before. Note that the best previous result was obtained by Epstein and van Stee (Acta Inform 41(9):595–606, 2005b) using an instance of Improved Harmonic. In this paper we show that Super Harmonic is more powerful than Improve Harmonic for online hypercube packing, and then we obtain better upper bounds on asymptotic competitive ratios. More precisely, we get an upper bound of 2.1187 for square packing and an upper bound of 2.6161 for cube packing, which improve upon the previous upper bounds 2.24437 and 2.9421 (Epstein and van Stee in Acta Inform 41(9):595–606, 2005b) for the two problems, respectively.  相似文献   

19.
In this paper we consider a variation of the bin packing problem in which bins of different types have different costs and capacities. Furthermore, each bin has to be filled at least to a certain level, which depends on its type. We present a set partitioning formulation and an exact optimization algorithm which exploits column generation and specialized heuristics. We compare our algorithm with the general purpose solver ILOG CPLEX, running on two compact ILP formulations and we report on experimental results on instances we have generated from data-sets for the variable size bin packing problem.  相似文献   

20.
The ship placement problem constitutes a daily challenge for planners in tide river harbours. In essence, it entails positioning a set of ships into as few lock chambers as possible while satisfying a number of general and specific placement constraints. These constraints make the ship placement problem different from traditional 2D bin packing. A mathematical formulation for the problem is presented. In addition, a decomposition model is developed which allows for computing optimal solutions in a reasonable time. A multi-order best fit heuristic for the ship placement problem is introduced, and its performance is compared with that of the left-right-left-back heuristic. Experiments on simulated and real-life instances show that the multi-order best fit heuristic beats the other heuristics by a landslide, while maintaining comparable calculation times. Finally, the new heuristic’s optimality gap is small, while it clearly outperforms the exact approach with respect to calculation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号