首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Verschaffel  Lieven  Schukajlow  Stanislaw  Star  Jon  Van Dooren  Wim 《ZDM》2020,52(1):1-16

Word problems are among the most difficult kinds of problems that mathematics learners encounter. Perhaps as a result, they have been the object of a tremendous amount research over the past 50 years. This opening article gives an overview of the research literature on word problem solving, by pointing to a number of major topics, questions, and debates that have dominated the field. After a short introduction, we begin with research that has conceived word problems primarily as problems of comprehension, and we describe the various ways in which this complex comprehension process has been conceived theoretically as well as the empirical evidence supporting different theoretical models. Next we review research that has focused on strategies for actually solving the word problem. Strengths and weaknesses of informal and formal solution strategies—at various levels of learners’ mathematical development (i.e., arithmetic, algebra)—are discussed. Fourth, we address research that thinks of word problems as exercises in complex problem solving, requiring the use of cognitive strategies (heuristics) as well as metacognitive (or self-regulatory) strategies. The fifth section concerns the role of graphical representations in word problem solving. The complex and sometimes surprising results of research on representations—both self-made and externally provided ones—are summarized and discussed. As in many other domains of mathematics learning, word problem solving performance has been shown to be significantly associated with a number of general cognitive resources such as working memory capacity and inhibitory skills. Research focusing on the role of these general cognitive resources is reviewed afterwards. The seventh section discusses research that analyzes the complex relationship between (traditional) word problems and (genuine) mathematical modeling tasks. Generally, this research points to the gap between the artificial word problems learners encounter in their mathematics lessons, on the one hand, and the authentic mathematical modeling situations with which they are confronted in real life, on the other hand. Finally, we review research on the impact of three important elements of the teaching/learning environment on the development of learners’ word problem solving competence: textbooks, software, and teachers. It is shown how each of these three environmental elements may support or hinder the development of learners’ word problem solving competence. With this general overview of international research on the various perspectives on this complex and fascinating kind of mathematical problem, we set the scene for the empirical contributions on word problems that appear in this special issue.

  相似文献   

2.
3.
This article presents a branch-and-bound algorithm for globally solving the problem (P) of maximizing a generalized concave multiplicative function over a compact convex set. Since problem (P) does not seem to have been studied previously, the algorithm is apparently the first algorithm to be proposed for solving this problem. It works by globally solving a problem (P1) equivalent to problem (P). The branch-and-bound search undertaken by the algorithm uses rectangular partitioning and takes place in a space which typically has a much smaller dimension than the space to which the decision variables of problem (P) belong. Convergence of the algorithm is shown; computational considerations and benefits for users of the algorithm are given. A sample problem is also solved.  相似文献   

4.
As part of a large research project—Heuristic Education of Mathematics: developing and investigating strategies to teach applied mathematical problem solving—inquiries were made into the question of the transfer of knowledge and skills from the area of functions to real-world problems. In particular, studies were made of the translation processes from one representation of a problem into another representation. Surprisingly, students often used informal methods not taught in their lessons. After a full year of teaching mathematics, including a lot of applied problem solving, a shift from informal methods to the analytical (expert) solution method was identified. There were also significant differences among the learning results of three instructional design conditions. This research was extended to consider implications of the use of the graphic calculator. Casual use of the graphic calculator diminished the application of analytical methods, but integrated use brought about an enrichment of solution methods.  相似文献   

5.
The generalized precedence constrained traveling salesman problem is considered in the case when travel costs depend explicitly on the list of tasks that have not been performed (by the time of the travel). The original routing problem with dependent variables is represented in terms of an equivalent extremal problem with independent variables. An iterative method based on this representation is proposed for solving the original problem. The algorithm based on this method is implemented as a computer program.  相似文献   

6.
Gerald A. Goldin 《ZDM》2004,36(2):56-60
It has been suggested that activities in discrete mathematics allow a kind of new beginning for students and teachers. Students who have been “turned off” by traditional school mathematics, and teachers who have long ago routinized their instruction, can find in the domain of discrete mathematics opportunities for mathematical discovery and interesting, nonroutine problem solving. Sometimes formerly low-achieving students demonstrate mathematical abilities their teachers did not know they had. To take maximum advantage of these possibilities, it is important to know what kinds of thinking during problem solving can be naturally evoked by discrete mathematical situations—so that in developing a curriculum, the objectives can include pathways to desired mathematical reasoning processes. This article discusses some of these ways of thinking, with special attention to the idea of “modeling the general on the particular.” Some comments are also offered about students' possible affective pathways and structures.  相似文献   

7.
Many significant advances have been made in recent years for solving unconstrained binary quadratic programs (UQP). As a result, the size of problem instances that can be efficiently solved has grown from a hundred or so variables a few years ago to 2000 or 3000 variables today. These advances have motivated new applications of the model which, in turn, have created the need to solve even larger problems. In response to this need, we introduce several new “one-pass” heuristics for solving very large versions of this problem. Our computational experience on problems of up to 9000 variables indicates that these methods are both efficient and effective for very large problems. The significance of problems of this size is that they not only open the door to solving a much wider array of real world problems, but also that the standard linear mixed integer formulations of the nonlinear models involve over 40,000,000 variables and three times that many constraints. Our approaches can be used as stand-alone solution methods, or they can serve as procedures for quickly generating high quality starting points for other, more sophisticated methods.  相似文献   

8.
Mixed-integer nonlinear programming (MINLP) problems involving general constraints and objective functions with continuous and integer variables occur frequently in engineering design, chemical process industry and management. Although many optimization approaches have been developed for MINLP problems, these methods can only handle signomial terms with positive variables or find a local solution. Therefore, this study proposes a novel method for solving a signomial MINLP problem with free variables to obtain a global optimal solution. The signomial MINLP problem is first transformed into another one containing only positive variables. Then the transformed problem is reformulated as a convex mixed-integer program by the convexification strategies and piecewise linearization techniques. A global optimum of the signomial MINLP problem can finally be found within the tolerable error. Numerical examples are also presented to demonstrate the effectiveness of the proposed method.  相似文献   

9.
In this paper we are concerned with the problem of optimally designing three-phase induction motors. This problem can be formulated as a mixed variable programming problem. Two different solution strategies have been used to solve this problem. The first one consists in solving the continuous nonlinear optimization problem obtained by suitably relaxing the discrete variables. On the opposite, the second strategy tries to manage directly the discrete variables by alternating a continuous search phase and a discrete search phase. The comparison between the numerical results obtained with the above two strategies clearly shows the fruitfulness of taking directly into account the presence of both continuous and discrete variables.This work was supported by CNR/MIUR Research Program “Metodi e sistemi di supporto alle decisioni”, Rome, Italy.  相似文献   

10.
In solving certain optimization problems, the corresponding Lagrangian dual problem is often solved simply because in these problems the dual problem is easier to solve than the original primal problem. Another reason for their solution is the implication of the weak duality theorem which suggests that under certain conditions the optimal dual function value is smaller than or equal to the optimal primal objective value. The dual problem is a special case of a bilevel programming problem involving Lagrange multipliers as upper-level variables and decision variables as lower-level variables. Another interesting aspect of dual problems is that both lower and upper-level optimization problems involve only box constraints and no other equality of inequality constraints. In this paper, we propose a coevolutionary dual optimization (CEDO) algorithm for co-evolving two populations—one involving Lagrange multipliers and other involving decision variables—to find the dual solution. On 11 test problems taken from the optimization literature, we demonstrate the efficacy of CEDO algorithm by comparing it with a couple of nested smooth and nonsmooth algorithms and a couple of previously suggested coevolutionary algorithms. The performance of CEDO algorithm is also compared with two classical methods involving nonsmooth (bundle) optimization methods. As a by-product, we analyze the test problems to find their associated duality gap and classify them into three categories having zero, finite or infinite duality gaps. The development of a coevolutionary approach, revealing the presence or absence of duality gap in a number of commonly-used test problems, and efficacy of the proposed coevolutionary algorithm compared to usual nested smooth and nonsmooth algorithms and other existing coevolutionary approaches remain as the hallmark of the current study.  相似文献   

11.
This paper develops a mathematical model for project time compression problems in CPM/PERT type networks. It is noted this formulation of the problem will be an adequate approximation for solving the time compression problem with any continuous and non-increasing time-cost curve. The kind of this model is Mixed Integer Linear Program (MILP) with zero-one variables, and the Benders' decomposition procedure for analyzing this model has been developed. Then this paper proposes a new approach based on the surrogating method for solving these problems. In addition, the required computer programs have been prepared by the author to execute the algorithm. An illustrative example solved by the new algorithm, and two methods are compared by several numerical examples. Computational experience with these data shows the superiority of the new approach.  相似文献   

12.
In this article, we consider the static output feedback problem for discrete-time systems when complete set of state variables is not available. It has been reported that quasi-Newton methods have substandard performance on this problem. A structured quasi-Newton method with trust region globalization is analyzed and studied for solving this problem. Moreover, the classical Anderson-Moore method is enhanced by using the trust region mechanism to ensure global convergence instead of the line search technique. The algorithms are tested numerically on test problems of engineering applications.  相似文献   

13.
This article presents a model of insight that offers predictions on how and when insights are likely to occur as an individual solves problems. This model is based on a fundamental trade‐off between the conscious cognition that underlies how people decide among alternatives and the unconscious cognition that underlies insight. I argue that the attention controls how much thought (i.e., knowledge activation) goes to conscious cognition, and whatever activation is left over will go to finding an insight. I validate this model by replicating the common pattern of insight in problem solving (preparation—impasse—incubation—verification). The model implies that 1) one should be able to increase the frequency of insight by lessening the demand for conscious cognition, 2) impasse is not necessary for insight, and 3) incubation time increases if a person engages in any activity with a high demand on attention. Understanding how insight occurs during problem solving provides practical suggestions to make people and groups more creative and innovative; it also provides avenues for future research on the cognitive dynamics of insight. © 2004 Wiley Periodicals, Inc. Complexity 9: 17–24, 2004  相似文献   

14.
In this paper, a new method for solving arbitrary order ordinary differential equations and integro-differential equations of Fredholm and Volterra kind is presented. In the proposed method, these equations with separated boundary conditions are converted to a parametric optimization problem subject to algebraic constraints. Finally, control and state variables will be approximated by a Chebychev series. In this method, a new idea has been used, which offers us the ability of applying the mentioned method for almost all kinds of ordinary differential and integro-differential equations with different types of boundary conditions. The accuracy and efficiency of the proposed numerical technique have been illustrated by solving some test problems.  相似文献   

15.
In this paper we propose a new iterative method for solving the asymmetric traffic equilibrium problem when formulated as a variational inequality whose variables are the path flows. The path formulation leads to a decomposable structure of the constraints set and allows us to obtain highly accurate solutions. The proposed method is a column generation scheme based on a variant of the Khobotov’s extragradient method for solving variational inequalities. Computational experiments have been carried out on several networks of a medium-large scale. The results obtained are promising and show the applicability of the method for solving large-scale equilibrium problems. This work has been supported by the National Research Program FIRB/RBNE01WBBBB on Large Scale Nonlinear Optimization.  相似文献   

16.
The paper considers a nontraditional—combinatorial—approach to solving the problem of a posteriori (off-line) noise-proof detection of a recurring fragment in a numerical sequence. Results are presented concerning the complexity, classification, and justification of algorithms for solving discrete extremal problems to which, within the combinatorial approach, some possible variants of this problem are reduced in the case when repetitions are quasi-periodic and the noise is additive.  相似文献   

17.
传统的求解0-1规划问题方法大多属于直接离散的解法.现提出一个包含严格转换和近似逼近三个步骤的连续化解法:(1)借助阶跃函数把0-1离散变量转化为[0,1]区间上的连续变量;(2)对目标函数采用逼近折中阶跃函数近光滑打磨函数,约束条件采用线性打磨函数逼近折中阶跃函数,把0-1规划问题由离散问题转化为连续优化模型;(3)利用高阶光滑的解法求解优化模型.该方法打破了特定求解方法仅适用于特定类型0-1规划问题惯例,使求解0-1规划问题的方法更加一般化.在具体求解时,采用正弦型光滑打磨函数来逼近折中阶跃函数,计算效果很好.  相似文献   

18.
The vertex coloring problem has been the subject of extensive research for many years. Driven by application potential as well as computational challenge, a variety of methods have been proposed for this difficult class of problems. Recent successes in the use of the unconstrained quadratic programming (UQP) model as a unified framework for modeling and solving combinatorial optimization problems have motivated a new approach to the vertex coloring problem. In this paper we present a UQP approach to this problem and illustrate its attractiveness with preliminary computational experience.  相似文献   

19.
Mathematical problem solving: an evolving research and practice domain   总被引:1,自引:0,他引:1  
Manuel Santos-Trigo 《ZDM》2007,39(5-6):523-536
Research programs in mathematical problem solving have evolved with the development and availability of computational tools. I review and discuss research programs that have influenced and shaped the development of mathematical education in Mexico and elsewhere. An overarching principle that distinguishes the problem solving approach to develop and learn mathematics is to conceptualize the discipline as a set of dilemmas or problems that need to be explored and solved in terms of mathematical resources and strategies. In this context, relevant questions that help structure and organize this paper include: What does it mean to learn mathematics in terms of problem solving? To what extent do research programs in problem solving orient curricular proposals? What types of instructional scenarios promote the students’ development of mathematical thinking based on problem solving? What type of reasoning do students develop as a result of using distinct computational tools in mathematical problem solving?  相似文献   

20.
Solving large scale Max Cut problems via tabu search   总被引:1,自引:0,他引:1  
In recent years many algorithms have been proposed in the literature for solving the Max-Cut problem. In this paper we report on the application of a new Tabu Search algorithm to large scale Max-cut test problems. Our method provides best known solutions for many well-known test problems of size up to 10,000 variables, although it is designed for the general unconstrained quadratic binary program (UBQP), and is not specialized in any way for the Max-Cut problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号