首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

2.
Let G=(V,E) be a 2-connected simple graph and let dG(u,v) denote the distance between two vertices u,v in G. In this paper, it is proved: if the inequality dG(u)+dG(v)?|V(G)|-1 holds for each pair of vertices u and v with dG(u,v)=2, then G is Hamiltonian, unless G belongs to an exceptional class of graphs. The latter class is described in this paper. Our result implies the theorem of Ore [Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55]. However, it is not included in the theorem of Fan [New sufficient conditions for cycles in graph, J. Combin. Theory Ser. B 37 (1984) 221-227].  相似文献   

3.
A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u, v ∈ V (G) there is a vertex w ∈ W such that d(u, w) ≠ d(v, w). A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G, denoted by dim(G). For a vertex u of G and a subset S of V (G), the distance between u and S is the number min s∈S d(u, s). A k-partition Π = {S 1 , S 2 , . . . , S k } of V (G) is called a resolving partition if for every two distinct vertices u, v ∈ V (G) there is a set S i in Π such that d(u, Si )≠ d(v, Si ). The minimum k for which there is a resolving k-partition of V (G) is called the partition dimension of G, denoted by pd(G). The circulant graph is a graph with vertex set Zn , an additive group of integers modulo n, and two vertices labeled i and j adjacent if and only if i-j (mod n) ∈ C , where CZn has the property that C =-C and 0 ■ C. The circulant graph is denoted by Xn, Δ where Δ = |C|. In this paper, we study the metric dimension of a family of circulant graphs Xn, 3 with connection set C = {1, n/2 , n-1} and prove that dim(Xn, 3 ) is independent of choice of n by showing that dim(Xn, 3 ) ={3 for all n ≡ 0 (mod 4), 4 for all n ≡ 2 (mod 4). We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C = {±1, ±2} and prove that pd(Xn, 4 ) is independent of choice of n and show that pd(X5,4 ) = 5 and pd(Xn,4 ) ={3 for all odd n ≥ 9, 4 for all even n ≥ 6 and n = 7.  相似文献   

4.
Let G = (V (G),E(G)) be a graph with vertex set V (G) and edge set E(G), and g and f two positive integral functions from V (G) to Z+-{1} such that g(v) ≤ f(v) ≤ dG(v) for all vV (G), where dG(v) is the degree of the vertex v. It is shown that every graph G, including both a [g,f]-factor and a hamiltonian path, contains a connected [g,f +1]-factor. This result also extends Kano’s conjecture concerning the existence of connected [k,k+1]-factors in graphs. * The work of this author was supported by NSFC of China under Grant No. 10271065, No. 60373025. † The work of these authors was also supported in part by the US Department of Energy’s Genomes to Life program (http://doegenomestolife.org/) under project, “Carbon Sequestration in Synechococcus sp.: From Molecular Machines to Hierarchical Modeling” (www.genomes2life.org) and by National Science Foundation (NSF/DBI-0354771,NSF/ITR-IIS-0407204).  相似文献   

5.
It was proved ([5], [6]) that ifG is ann-vertex-connected graph then for any vertex sequencev 1, ...,v n V(G) and for any sequence of positive integersk 1, ...,k n such thatk 1+...+k n =|V(G)|, there exists ann-partition ofV(G) such that this partition separates the verticesv 1, ...,v(n), and the class of the partition containingv i induces a connected subgraph consisting ofk i vertices, fori=1, 2, ...,n. Now fix the integersk 1, ...,k n . In this paper we study what can we say about the vertex-connectivity ofG if there exists such a partition ofV(G) for any sequence of verticesv 1, ...,v n V(G). We find some interesting cases when the existence of such partitions implies then-vertex-connectivity ofG, in the other cases we give sharp lower bounds for the vertex-connectivity ofG.  相似文献   

6.
《Quaestiones Mathematicae》2013,36(8):1045-1059
Abstract

The algebraic notion of a “congruence” seems to be foreign to contemporary graph theory. We propound that it need not be so by developing a theory of congruences of graphs: a congruence on a graph G = (V, E) being a pair (~, ) of which ~ is an equivalence relation on V and is a set of unordered pairs of vertices of G with a special relationship to ~ and E. Kernels and quotient structures are used in this theory to develop homomorphism and isomorphism theorems which remind one of similar results in an algebraic context. We show that this theory can be applied to deliver structural decompositions of graphs into “factor” graphs having very special properties, such as the result that each graph, except one, is a subdirect product of graphs with universal vertices. In a final section, we discuss corresponding concepts and briefly describe a corresponding theory for graphs which have a loop at every vertex and which we call loopy graphs. They are in a sense more “algebraic” than simple graphs, with their meet-semilattices of all congruences becoming complete algebraic lattices.  相似文献   

7.
A Steiner tree for a set S of vertices in a connected graph G is a connected subgraph of G with a smallest number of edges that contains S. The Steiner interval I(S) of S is the union of all the vertices of G that belong to some Steiner tree for S. If S={u,v}, then I(S)=I[u,v] is called the interval between u and v and consists of all vertices that lie on some shortest u-v path in G. The smallest cardinality of a set S of vertices such that ?u,vSI[u,v]=V(G) is called the geodetic number and is denoted by g(G). The smallest cardinality of a set S of vertices of G such that I(S)=V(G) is called the Steiner geodetic number of G and is denoted by sg(G). We show that for distance-hereditary graphs g(G)?sg(G) but that g(G)/sg(G) can be arbitrarily large if G is not distance hereditary. An efficient algorithm for finding the Steiner interval for a set of vertices in a distance-hereditary graph is described and it is shown how contour vertices can be used in developing an efficient algorithm for finding the Steiner geodetic number of a distance-hereditary graph.  相似文献   

8.
We examine classes of extremal graphs for the inequality γ(G)?|V|-max{d(v)+βv(G)}, where γ(G) is the domination number of graph G, d(v) is the degree of vertex v, and βv(G) is the size of a largest matching in the subgraph of G induced by the non-neighbours of v. This inequality improves on the classical upper bound |V|-maxd(v) due to Claude Berge. We give a characterization of the bipartite graphs and of the chordal graphs that achieve equality in the inequality. The characterization implies that the extremal bipartite graphs can be recognized in polynomial time, while the corresponding problem remains NP-complete for the extremal chordal graphs.  相似文献   

9.
10.
A subset S of vertices of a graph G is a secure set if |N [X] ∩ S| ≥ |N [X] ? S| holds for any subset X of S, where N [X] denotes the closed neighborhood of X. The minimum cardinality s(G) of a secure set in G is called the security number of G. We investigate the security number of lexicographic product graphs by defining a new concept of tightly-securable graphs. In particular we derive several exact results for different families of graphs which yield some general results.  相似文献   

11.
For a graphG, the switched graphS v (G) ofG at a vertexv is the graph obtained fromG by deleting the edges ofG incident withv and adding the edges of incident withv. Properties of graphs whereS v (G) G or are studied. This concept is extended to the partial complementS H (G) where H . The investigation here centers around the existence of setsH for whichS H (G) G. A parameter is introduced which measures how near a graph is to being self-complementary.  相似文献   

12.
A directed dominating set in a directed graph D is a set S of vertices of V such that every vertex uV(D)?S has an adjacent vertex v in S with v directed to u. The directed domination number of D, denoted by γ(D), is the minimum cardinality of a directed dominating set in D. The directed domination number of a graph G, denoted Γd(G), is the maximum directed domination number γ(D) over all orientations D of G. The directed domination number of a complete graph was first studied by Erd?s [P. Erd?s On a problem in graph theory, Math. Gaz. 47 (1963) 220–222], albeit in a disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α denotes the independence number of a graph G, we show that αΓd(G)≤α(1+2ln(n/α)).  相似文献   

13.
《Quaestiones Mathematicae》2013,36(1-2):291-313
Abstract

A 0-dominating function 0DF of a graph G = (V,E) is a function f: V → [0,1] such that Σ xεN(v) f(x) ≥ 1 for each ν ε V with f(v) = 0. The aggregate of a 0DF f is defined by ag(f) = ΣvεV f(v) and the infimum and supremum of the set of aggregates over all minimal 0DFs of a graph are denoted by γ0 and Γ0 respectively. We prove some properties of minimal 0DFs and determine γ0 and Γ0 for some classes of graphs.  相似文献   

14.
《Quaestiones Mathematicae》2013,36(6):749-757
Abstract

A set S of vertices is a total dominating set of a graph G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set is the total domination number γt(G). A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f (u)=0 is adjacent to at least one vertex v of G for which f (v)=2. The minimum of f (V (G))=∑u ∈ V (G) f (u) over all such functions is called the Roman domination number γR (G). We show that γt(G) ≤ γR (G) with equality if and only if γt(G)=2γ(G), where γ(G) is the domination number of G. Moreover, we characterize the extremal graphs for some graph families.  相似文献   

15.
16.
Reliability and efficiency are important criteria in the design of interconnection networks. Connectivity is a widely used measurement for network fault-tolerance capacities, while diameter determines routing efficiency along individual paths. In practice, we are interested in high-connectivity, small-diameter networks. Recently, Hsu introduced the notion ofw-wide diameter, which unifies diameter and connectivity. This paper investigates thew-wide diameterd w (G) and two related parameters:w-fault diameterD w (G) andw-Rabin numberr w (G). In particular, we determined w (G) andD w (G) for 2wK(G) andG is a circulant digraphG(d n ; 1,d,...,d n–1) or a cycle prefix digraph.Supported in part by the National Science Council under grant NSC86-2115-M009-002.  相似文献   

17.
For S ? V(G) the S-center and S-centroid of G are defined as the collection of vertices uV(G) that minimize es(u) = max {d(u, v): vS} and ds(u) = ∑u∈S d(u, v), respectively. This generalizes the standard definition of center and centroid from the special case of S = V(G). For 1 ? k ?|V(G)| and uV(G) let rk(u) = max {∑sS d(u, s): S ? V(G), |S| = k}. The k-centrum of G, denoted C(G; k), is defined to be the subset of vertices u in G for which rk(u) is a minimum. This also generalizes the standard definitions of center and centroid since C(G; 1) is the center and C(G; |V(G)|) is the centroid. In this paper the structure of these sets for trees is examined. Generalizations of theorems of Jordan and Zelinka are included.  相似文献   

18.
Graph Connectivity After Path Removal   总被引:1,自引:0,他引:1  
Let G be a graph and u, v be two distinct vertices of G. A u—v path P is called nonseparating if G—V(P) is connected. The purpose of this paper is to study the number of nonseparating u—v path for two arbitrary vertices u and v of a given graph. For a positive integer k, we will show that there is a minimum integer (k) so that if G is an (k)-connected graph and u and v are two arbitrary vertices in G, then there exist k vertex disjoint paths P 1[u,v], P 2[u,v], . . ., P k [u,v], such that G—V (P i [u,v]) is connected for every i (i = 1, 2, ..., k). In fact, we will prove that (k) 22k+2. It is known that (1) = 3.. A result of Tutte showed that (2) = 3. We show that (3) = 6. In addition, we prove that if G is a 5-connected graph, then for every pair of vertices u and v there exists a path P[u, v] such that G—V(P[u, v]) is 2-connected.* Supported by NSF grant No. DMS-0070059 Supported by ONR grant N00014-97-1-0499 Supported by NSF grant No. 9531824  相似文献   

19.
Diperfect graphs     
Gallai and Milgram have shown that the vertices of a directed graph, with stability number α(G), can be covered by exactly α(G) disjoint paths. However, the various proofs of this result do not imply the existence of a maximum stable setS and of a partition of the vertex-set into paths μ1, μ2, ..., μk such tht |μiS|=1 for alli. Later, Gallai proved that in a directed graph, the maximum number of vertices in a path is at least equal to the chromatic number; here again, we do not know if there exists an optimal coloring (S 1,S 2, ...,S k) and a path μ such that |μ ∩S i|=1 for alli. In this paper we show that many directed graphs, like the perfect graphs, have stronger properties: for every maximal stable setS there exists a partition of the vertex set into paths which meet the stable set in only one point. Also: for every optimal coloring there exists a path which meets each color class in only one point. This suggests several conjecties similar to the perfect graph conjecture. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

20.
A graph G=(V,E) is called a split graph if there exists a partition V=IK such that the subgraphs of G induced by I and K are empty and complete graphs, respectively. In 1980, Burkard and Hammer gave a necessary but not sufficient condition for hamiltonian split graphs with |I|<|K|. In this paper, we show that the Burkard-Hammer condition is also sufficient for the existence of a Hamilton cycle in a split graph G such that 5≠|I|<|K| and the minimum degree δ(G)?|I|-3. For the case 5=|I|<|K|, all split graphs satisfying the Burkard-Hammer condition but having no Hamilton cycles are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号