首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let A be a k-algebra and G be a group acting on A. We show that G also acts on the Hochschild cohomology algebra HH (A) and that there is a monomorphism of rings HH (A) G HH (A[G]). That allows us to show the existence of a monomorphism from HH (Ã) G into HH (A), where à is a Galois covering with group G.  相似文献   

2.
We present conditions that allow us to prove the existence of eigenvalues and characteristic values for operator F(D) ? C(λ): L 2(R m ) → L 2(R m ), where F(D) is a pseudo-differential operator with a symbol F() and C(λ): L 2(R m ) → L 2(R m ) is a linear continuous operator.  相似文献   

3.
It was proved that the complexity of square root computation in the Galois field GF(3s), s = 2kr, is equal to O(M(2k)M(r)k + M(r) log2r) + 2kkr1+o(1), where M (n) is the complexity of multiplication of polynomials of degree n over fields of characteristics 3. The complexity of multiplication and division in the field GF(3s) is equal to O(M(2k)M(r)) and O(M(2k)M(r)) + r1+o(1), respectively. If the basis in the field GF(3r) is determined by an irreducible binomial over GF(3) or is an optimal normal basis, then the summands 2kkr1+o(1) and r1+o(1) can be omitted. For M(n) one may take n log2nψ(n) where ψ(n) grows slower than any iteration of the logarithm. If k grow and r is fixed, than all the estimates presented here have the form Or (M (s) log 2s) = s (log 2s)2ψ(s).  相似文献   

4.
A subset F ? V (G) is called an R k -vertex-cut of a graph G if G ? F is disconnected and each vertex of G ? F has at least k neighbors in G ? F. The R k -vertex-connectivity of G, denoted by κ k (G), is the cardinality of a minimum R k -vertex-cut of G. Let B n be the bubble sort graph of dimension n. It is known that κ k (B n ) = 2 k (n ? k ? 1) for n ≥ 2k and k = 1, 2. In this paper, we prove it for k = 3 and conjecture that it is true for all kN. We also prove that the connectivity cannot be more than conjectured.  相似文献   

5.
The article is devoted to the theory of elliptic functions of level n. An elliptic function of level n determines a Hirzebruch genus called an elliptic genus of level n. Elliptic functions of level n are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level 2 is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form F(u, v) = (u2 ? v2)/(uB(v) ? vB(u)), B(0) = 1. The elliptic function of level 3 is the exponential of the universal formal group of the form F(u, v) = (u2A(v) ? v2A(u))/(uA(v)2 ? vA(u)2), A(0) = 1, A″(0) = 0. In the present study we show that the elliptic function of level 4 is the exponential of the universal formal group of the form F(u, v) = (u2A(v) ? v2A(u))/(uB(v) ? vB(u)), where A(0) = B(0) = 1 and for B′(0) = A″(0) = 0, A′(0) = A1, and B″(0) = 2B2 the following relation holds: (2B(u) + 3A1u)2 = 4A(u)3 ? (3A12 ? 8B2)u2A(u)2. To prove this result, we express the elliptic function of level 4 in terms of the Weierstrass elliptic functions.  相似文献   

6.
For yx 4/5 L 8B+151 (where L = log(xq) and B is an absolute constant), a nontrivial estimate is obtained for short cubic exponential sums over primes of the form S 3(α; x, y) = ∑ x?y<nx Λ(n)e(αn 3), where α = a/q + θ/q 2, (a, q) = 1, L 32(B+20) < qy 5 x ?2 L ?32(B+20), |θ| ≤ 1, Λ is the von Mangoldt function, and e(t) = e 2πit.  相似文献   

7.
We clarify the relation between the subcategory D_(hf)~b(A) of homological finite objects in D~b(A)and the subcategory K~b(P) of perfect complexes in D~b(A), by giving two classes of abelian categories A with enough projective objects such that D_(hf)~b(A) = K~b(P), and finding an example such that D_(hf)~b(A)≠K~b(P). We realize the bounded derived category D~b(A) as a Verdier quotient of the relative derived category D_C~b(A), where C is an arbitrary resolving contravariantly finite subcategory of A. Using this relative derived categories, we get categorical resolutions of a class of bounded derived categories of module categories of infinite global dimension.We prove that if an Artin algebra A of infinite global dimension has a module T with inj.dimT ∞ such that ~⊥T is finite, then D~b(modA) admits a categorical resolution; and that for a CM(Cohen-Macaulay)-finite Gorenstein algebra, such a categorical resolution is weakly crepant.  相似文献   

8.
We investigate the equiconvergence on TN = [?π, π)N of expansions in multiple trigonometric Fourier series and in the Fourier integrals of functions fLp(TN) and gLp(RN), p > 1, N ≥ 3, g(x) = f(x) on TN, in the case where the “partial sums” of these expansions, i.e., Sn(x; f) and Jα(x; g), respectively, have “numbers” n ∈ ZN and α ∈ RN (nj = [αj], j = 1,..., N, [t] is the integral part of t ∈ R1) containing N ? 1 components which are elements of “lacunary sequences.”  相似文献   

9.
Let L=?Δ+V be a Schrödinger operator on ? d , d≥3. We assume that V is a nonnegative, compactly supported potential that belongs to L p (? d ), for some p>d /2. Let K t be the semigroup generated by ?L. We say that an L 1(? d )-function f belongs to the Hardy space \(H^{1}_{L}\) associated with L if sup?t>0|K t f| belongs to L 1(? d ). We prove that \(f\in H^{1}_{L}\) if and only if R j fL 1(? d ) for j=1,…,d, where R j =(?/? x j )L ?1/2 are the Riesz transforms associated with L.  相似文献   

10.
Block sensitivity (bs(f)), certificate complexity (C(f)) and fractional certificate complexity (C*(f)) are three fundamental combinatorial measures of complexity of a boolean function f. It has long been known that bs(f) ≤ C*(f) ≤ C(f) = O(bs(f)2). We provide an infinite family of examples for which C(f) grows quadratically in C*(f) (and also bs(f)) giving optimal separations between these measures. Previously the biggest separation known was \(C(f) = C*(f)^{\log _{4,5} 5}\). We also give a family of examples for which C*(f)= Ω (bs(f)3/2).These examples are obtained by composing boolean functions in various ways. Here the composition fog of f with g is obtained by substituting for each variable of f a copy of g on disjoint sets of variables. To construct and analyse these examples we systematically investigate the behaviour under function composition of these measures and also the sensitivity measure s(f). The measures s(f), C(f) and C*(f) behave nicely under composition: they are submultiplicative (where measure m is submultiplicative if m(fog) ≤ m(f)m(g)) with equality holding under some fairly general conditions. The measure bs(f) is qualitatively different: it is not submultiplicative. This qualitative difference was not noticed in the previous literature and we correct some errors that appeared in previous papers. We define the composition limit of a measure m at function f, m lim(f) to be the limit as k grows of m(f (k))1/k , where f (k) is the iterated composition of f with itself k-times. For any function f we show that bs lim(f) = (C*)lim(f) and characterize s lim(f); (C*)lim(f), and C lim(f) in terms of the largest eigenvalue of a certain set of 2×2 matrices associated with f.  相似文献   

11.
In this paper, we study the nonexistence and longtime behavior of weak solution for the degenerate parabolic equation ? t u n = u m div(|?u m | p?2?u m ) + γ|?u m | p + β u n with zero boundary condition. Blow-up time is derived when the blow-up does occur.  相似文献   

12.
Let IK be an algebraically closed field of characteristic 0 complete for an ultrametric absolute value. Following results obtained in complex analysis, here we examine problems of uniqueness for meromorphic functions having finitely many poles, sharing points or a pair of sets (C.M. or I.M.) defined either in the whole field IK or in an open disk, or in the complement of an open disk. Following previous works in C, we consider functions fn(x)fm(ax + b), gn(x)gm(ax + b) with |a| = 1 and nm, sharing a rational function and we show that f/g is a n + m-th root of 1 whenever n + m ≥ 5. Next, given a small function w, if n, m ∈ IN are such that |n ? m| ≥ 5, then fn(x)fm(ax + b) ? w has infinitely many zeros. Finally, we examine branched values for meromorphic functions fn(x)fm(ax + b).  相似文献   

13.
Let M be an m-dimensional manifold and A = D k r /I = R⊕N A a Weil algebra of height r. We prove that any A-covelocity T x A fT x A *M, xM is determined by its values over arbitrary max{width A,m} regular and under the first jet projection linearly independent elements of T x A M. Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result T A *M ? T r *M without coordinate computations, which improves and generalizes the partial result obtained in Tomá? (2009) from mk to all cases of m.We also introduce the space J A (M,N) of A-jets and prove its rigidity in the sense of its coincidence with the classical jet space J r (M,N).  相似文献   

14.
If H is a subgroup of a finite group G then we denote the normal closure of H in G by H G . We call G a PE-group if every minimal subgroup X of G satisfies N G (X) ∩ X G = X. The authors classify the finite non-PE-groups whose maximal subgroups of even order are PE-groups.  相似文献   

15.
This paper is devoted to a study of L~q-tracing of the fractional temperature field u(t, x)—the weak solution of the fractional heat equation(?_t +(-?_x)~α)u(t, x) = g(t, x) in L~p(R_+~(1+n)) subject to the initial temperature u(0, x) = f(x) in L~p(R~n).  相似文献   

16.
Let R be a commutative Noetherian ring of dimension d, M a commutative cancellative torsion-free monoid of rank r and P a finitely generated projective R[M]-module of rank t. Assume M is Φ-simplicial seminormal. If \(M\in \mathcal {C}({\Phi })\), then Serre dim R[M]≤d. If r≤3, then Serre dim R[int(M)]≤d. If \(M\subset \mathbb {Z}_{+}^{2}\) is a normal monoid of rank 2, then Serre dim R[M]≤d. Assume M is c-divisible, d=1 and t≥3. Then P?∧ t PR[M] t?1. Assume R is a uni-branched affine algebra over an algebraically closed field and d=1. Then P?∧ t PR[M] t?1.  相似文献   

17.
Let μ be a Radon measure on Rd which may be non–doubling. The only condition satisfied by μ is that μ(B(x, r)) ≤ Cr n for all x ∈ ? d , r > 0 and some fixed 0 < nd. In this paper, the authors prove that the boundedness from H 1(μ) into L 1,(μ) of a singular integral operator T with Calderón–Zygmund kernel of Hörmander type implies its L 2(μ)–boundedness.  相似文献   

18.
Order-sharp estimates are established for the best N-term approximations of functions from Nikol’skii–Besov type classes Bpqsm(Tk) with respect to the multiple trigonometric system T(k) in the metric of Lr(Tk) for a number of relations between the parameters s, p, q, r, and m (s = (s1,..., sn) ∈ R+n, 1 ≤ p, q, r ≤ ∞, m = (m1,..., mn) ∈ Nn, k = m1 +... + mn). Constructive methods of nonlinear trigonometric approximation—variants of the so-called greedy algorithms—are used in the proofs of upper estimates.  相似文献   

19.
In this paper, we show that for t > 0, the joint distribution of the past {W t?s : 0 ≤ st} and the future {W t + s :s ≥ 0} of a d-dimensional standard Brownian motion (W s ), conditioned on {W t U}, where U is a bounded open set in ? d , converges weakly in C[0,C[0,) as t. The limiting distribution is that of a pair of coupled processes Y + B 1,Y + B 2 where Y,B 1,B 2 are independent, Y is uniformly distributed on U and B 1,B 2 are standard d-dimensional Brownian motions. Let σ t ,d t be respectively, the last entrance time before time t into the set U and the first exit time after t from U. When the boundary of U is regular, we use the continuous mapping theorem to show that the limiting distribution as t of the four dimensional vector with components \((W_{\sigma _{t}},t-\sigma _{t},W_{d_{t}},d_{t}-t)\), conditioned on {W t U}, is the same as that of the four dimensional vector whose components are the place and time of first exit from U of the processes Y + B 1 and Y + B 2 respectively.  相似文献   

20.
Let #K be a number of integer lattice points contained in a set K. In this paper we prove that for each d ∈ N there exists a constant C(d) depending on d only, such that for any origin-symmetric convex body K ? R d containing d linearly independent lattice points
$$\# K \leqslant C\left( d \right)\max \left( {\# \left( {K \cap H} \right)} \right)vo{l_d}{\left( K \right)^{\frac{{d - m}}{d}}},$$
where the maximum is taken over all m-dimensional subspaces of R d . We also prove that C(d) can be chosen asymptotically of order O(1) d d d?m . In particular, we have order O(1) d for hyperplane slices. Additionally, we show that if K is an unconditional convex body then C(d) can be chosen asymptotically of order O(d) d?m .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号