首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
In this paper, we investigate blow up criteria for the local smooth solutions to the 3D incompressible nematic liquid crystal flows via the components of the gradient velocity field \(\nabla u\) and the gradient orientation field \(\nabla d\). More precisely, we show that \(0< T_{ \ast}<+\infty\) is the maximal time interval if and only if
$$\begin{aligned} & \int_{0}^{T_{\ast}} \bigl\Vert \Vert \partial_{i}u\Vert _{L_{x_{i}} ^{\gamma}} \bigr\Vert _{L_{x_{j}x_{k}}^{\alpha}}^{\beta}+ \|\nabla d\| _{L^{\infty}}^{\frac{8}{3}}\mathrm{d}t=\infty, \\ &\quad\text{ with } \frac{2}{\alpha}+\frac{2}{\beta}\leq\frac{3\alpha +2}{4\alpha}, \text{ and } 1\leq\gamma\leq\alpha,2< \alpha\leq+\infty, \end{aligned}$$
or
$$\begin{aligned} \int_{0}^{T_{\ast}}\|\partial_{3}u_{3} \|^{\beta}_{L^{\alpha}}+\| \nabla d\|^{\frac{8}{3}}_{L^{\infty}} \mathrm{d}t=\infty,\quad\text{with } \frac{3}{\alpha}+\frac{2}{\beta}\leq \frac{3(\alpha+2)}{4 \alpha}, \text{ and } 2< \alpha\leq\infty, \end{aligned}$$
where \(i,j,k\in\{1,2,3\}\), \(i\neq j\), \(i\neq k\), and \(j\neq k\).
  相似文献   

2.
Huixue Lao 《Acta Appl Math》2010,110(3):1127-1136
Let L(sym j f,s) be the jth symmetric power L-function attached to a holomorphic Hecke eigencuspform f(z) for the full modular group, and \(\lambda_{\mathrm{sym}^{j}f}(n)\) denote its nth coefficient. In this paper we are able to prove that
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{3}f}(n)\bigg|^{2}dy=O\bigl(x^{2}\bigr),$
and
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{4}f}(n)\bigg|^{2}dy=O\bigl(x^{\frac{11}{5}}\log x\bigr).$
  相似文献   

3.
In this paper, we investigate the Hyers–Ulam stability of the following quartic equation $$\begin{array}{ll} {\sum\limits^{n}_{k=2}}\left({\sum\limits^{k}_{i_{1}=2}}{\sum\limits^{k+1}_{i_{2}=i_{1}+1}} \ldots {\sum\limits^{n}_{i_{n-k+1}=i_{n-k}+1}}\right)\\ \quad\times f \left({\sum\limits^{n}_{i=1,i \neq i_{1},\ldots,i_{n-k+1}}} x_{i}-{\sum\limits^{n-k+1}_{r=1}}x_{i_{r}}\right) + f \left({\sum\limits^{n}_{i=1}}x_{i}\right)\\ \quad-2^{n-2}{\sum\limits^{}_{1 \leq{i} \leq{j} \leq{n}}}(f(x_{i} + x_{j}){+f(x_{i} - x_{j})){+2^{n-5}(n - 2){\sum\limits^{n}_{i=1}}f(2x_{i})}} = \theta \end{array} $$ $({n \in \mathbb{N}, n \geq 3})$ in β-homogeneous F-spaces.  相似文献   

4.
Using the fixed point method, we investigate the stability of a generalization of Jensen functional equation
$$ \sum_{k=0}^{n-1} f(x+ b_{k}y)=nf(x),$$
where \({n \in \mathbb{N}_{2}}\), \({b_{k}=\exp(\frac{2i\pi k}{n})}\) for \({0\leq k \leq n-1}\), in Banach spaces. Also, we prove the hyperstability results of this equation by the fixed point method.
  相似文献   

5.
We prove a conjecture of Okada giving an exact formula for a certain statistic for hook-lengths of partitions:
$\frac{1}{n!} \sum_{\lambda \vdash n} f_{\lambda}^2 \sum_{u \in \lambda} \prod_{i=1}^{r}\bigl(h_u^2 - i^2\bigr) = \frac{1}{2(r+1)^2} \binom{2r}{r}\binom{2r+2}{ r+1} \prod_{j=0}^{r} (n-j),$
where f λ is the number of standard Young tableaux of shape λ and h u is the hook length of the square u of the Young diagram of λ. We also obtain other similar formulas.
  相似文献   

6.
Let \({{\left\{x_{1}, \dots, x_{n}\right\}\subset \mathbb{R}^2}}\) be a set of points in the unit circle. It is shown that
$\sum\limits^{n}_{i=1}{\min_{j \neq i}{\left\|x_{i} - x_{j}\right\|^2}}\leq9,$
which is best possible and improves earlier results by Arpacioglu and Haas and Xia and Liu.
  相似文献   

7.
Let \({\Omega \subset \mathbb{R}^2}\) be an open, bounded domain and \({\Omega = \bigcup_{i = 1}^{N} \Omega_{i}}\) be a partition. Denote the Fraenkel asymmetry by \({0 \leq \mathcal{A}(\Omega_i) \leq 2}\) and write $$D(\Omega_i) := \frac{|\Omega_{i}| - {\rm min}_{1 \leq j \leq N}{|\Omega_{j}|}}{|\Omega_{i}|}$$ with \({0 \leq D(\Omega_{i}) \leq 1}\) . For N sufficiently large depending only on \({\Omega}\) , there is an uncertainty principle $$\left(\sum_{i=1}^{N}{\frac{|\Omega_{i}|}{|\Omega|}{\mathcal{A}}(\Omega_i)}\right) + \left(\sum_{i=1}^{N}{\frac{|\Omega_i|}{|\Omega|}D(\Omega_i)}\right) \geq \frac{1}{60000}.$$ The statement remains true in dimensions \({n \geq 3}\) for some constant \({c_{n} > 0}\) . As an application, we give an (unspecified) improvement of Pleijel’s estimate on the number of nodal domains of a Laplacian eigenfunction and an improved inequality for a spectral partition problem.  相似文献   

8.
Let {X n ; n≥1} be a sequence of independent copies of a real-valued random variable X and set S n =X 1+???+X n , n≥1. This paper is devoted to a refinement of the classical Kolmogorov–Marcinkiewicz–Zygmund strong law of large numbers. We show that for 0<p<2,
$\sum_{n=1}^{\infty}\frac{1}{n}\biggl(\frac{|S_{n}|}{n^{1/p}}\biggr)<\infty\quad \mbox{almost surely}$
if and only if
$\begin{cases}\mathbb{E}|X|^{p}<\infty &; \mbox{if }0 < p < 1,\\\mathbb{E}X=0,\ \sum_{n=1}^{\infty}\frac{|\mathbb{E}XI\{|X|\leq n\}|}{n}<\infty,\mbox{ and }\\\sum_{n=1}^{\infty}\frac{\int_{\min\{u_{n},n\}}^{n}\mathbb{P}(|X|>t)\,dt}{n}<\infty &; \mbox{if }p = 1,\\\mathbb{E}X=0\mbox{ and }\int_{0}^{\infty}\mathbb{P}^{1/p}(|X|>t)\,dt<\infty,&;\mbox{if }1 < p < 2,\end{cases}$
where \(u_{n}=\inf \{t:~\mathbb{P}(|X|>t)<\frac{1}{n}\}\), n≥1. Versions of the above result in a Banach space setting are also presented. To establish these results, we invoke the remarkable Hoffmann-Jørgensen (Stud. Math. 52:159–186, 1974) inequality to obtain some general results for sums of the form \(\sum_{n=1}^{\infty}a_{n}\|\sum_{i=1}^{n}V_{i}\|\) (where {V n ; n≥1} is a sequence of independent Banach-space-valued random variables, and a n ≥0, n≥1), which may be of independent interest, but which we apply to \(\sum_{n=1}^{\infty}\frac{1}{n}(\frac{|S_{n}|}{n^{1/p}})\).
  相似文献   

9.
There are two parts of this article. We first find explicit formulas for the heat kernel of the sub-elliptic operators $\frac{1}{2}\partial_{x}^{2}-x^{m}\partial_{y}$ with m=0,1,2. We also find the heat kernel for the sub-elliptic operator $\frac{1}{2}\sum_{j=1}^{n}\partial_{x_{j}}^{2}+(\sum_{j=1}^{n}a_{j}x_{j})\partial_{y}$ , with a i constants. In the second part of this paper, we apply results from the first part to construct a close form formula for pricing Asian options on a geometric moving average.  相似文献   

10.
We introduce a natural definition for sums of the form
$\sum_{\nu=1}^xf(\nu)$
when the number of terms x is a rather arbitrary real or even complex number. The resulting theory includes the known interpolation of the factorial by the Γ function or Euler’s little-known formula \(\sum_{\nu=1}^{-1/2}\frac{1}{\nu}=-2\ln 2\).
Many classical identities like the geometric series and the binomial theorem nicely extend to this more general setting. Sums with a fractional number of terms are closely related to special functions, in particular the Riemann and Hurwitz ζ functions. A number of results about fractional sums can be interpreted as classical infinite sums or products or as limits, including identities like
$\begin{array}{l}\displaystyle\lim_{n\to\infty}\Biggl[e^{\frac{n}{4}(4n+1)}n^{-\frac{1}{8}-n(n+1)}(2\pi)^{-\frac{n}{2}}\prod_{k=1}^{2n}\Gamma\biggl(1+\frac{k}{2}\biggr)^{k(-1)^k}\Biggr]\\[12pt]\quad =\displaystyle\sqrt[12]{2}\exp\biggl(\frac{5}{24}-\frac{3}{2}\zeta'(-1)-\frac{7\zeta(3)}{16\pi^2}\biggr),\end{array}$
some of which seem to be new; and even for those which are known, our approach provides a new method to derive these identities and many others.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号