首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove that, for all integers \(n\ge 1\),
$$\begin{aligned} \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+a}\right) <\frac{\root n \of {n!}}{\root n+1 \of {(n+1)!}}\le \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+b}\right) \end{aligned}$$
and
$$\begin{aligned} \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\alpha }\right) <\left( 1+\frac{1}{n}\right) ^{n}\frac{\root n \of {n!}}{n}\le \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\beta }\right) , \end{aligned}$$
with the best possible constants
$$\begin{aligned}&a=\frac{1}{2},\quad b=\frac{1}{2^{3/4}\pi ^{1/4}-1}=0.807\ldots ,\quad \alpha =\frac{13}{6} \\&\text {and}\quad \beta =\frac{2\sqrt{2}-\sqrt{\pi }}{\sqrt{\pi }-\sqrt{2}}=2.947\ldots . \end{aligned}$$
  相似文献   

2.
For \(k,l\in \mathbf {N}\), let
$$\begin{aligned}&P_{k,l}=\Bigl (\frac{l}{k+l}\Bigr )^{k+l} \sum _{\nu =0}^{k-1} {k+l\atopwithdelims ()\nu } \Bigl (\frac{k}{l}\Bigr )^{\nu }\\&\quad \text{ and }\quad Q_{k,l}=\Bigl (\frac{l}{k+l}\Bigr )^{k+l} \sum _{\nu =0}^{k} {k+l\atopwithdelims ()\nu } \Bigl (\frac{k}{l}\Bigr )^{\nu }. \end{aligned}$$
We prove that the inequality
$$\begin{aligned} \frac{1}{4}\le P_{k,l} \end{aligned}$$
is valid for all natural numbers k and l. The sign of equality holds if and only if \(k=l=1\). This complements a result of Vietoris, who showed that
$$\begin{aligned} P_{k,l}<\frac{1}{2} \quad {(k,l\in \mathbf {N})}. \end{aligned}$$
An immediate corollary is that
$$\begin{aligned} \frac{1}{4}\le P_{k,l}<\frac{1}{2} <Q_{k,l}\le \frac{3}{4} \quad {(k,l\in \mathbf {N})}. \end{aligned}$$
The constant bounds are sharp.
  相似文献   

3.
Let \(\mu \) and \(\nu \) be measures supported on \(\left( -1,1\right) \) with corresponding orthonormal polynomials \(\left\{ p_{n}^{\mu }\right\} \) and \( \left\{ p_{n}^{\nu }\right\} \), respectively. Define the mixed kernel
$$\begin{aligned} K_{n}^{{\mu },\nu }\left( x,y\right) =\sum _{j=0}^{n-1}p_{j}^{\mu }\left( x\right) p_{j}^{\nu }\left( y\right) . \end{aligned}$$
We establish scaling limits such as
$$\begin{aligned}&\lim _{n\rightarrow \infty }\frac{\pi \sqrt{1-\xi ^{2}}\sqrt{\mu ^{\prime }\left( \xi \right) \nu ^{\prime }\left( \xi \right) }}{n}K_{n}^{\mu ,\nu }\left( \xi +\frac{a\pi \sqrt{1-\xi ^{2}}}{n},\xi +\frac{b\pi \sqrt{1-\xi ^{2}}}{n}\right) \\&\quad =S\left( \frac{\pi \left( a-b\right) }{2}\right) \cos \left( \frac{\pi \left( a-b\right) }{2}+B\left( \xi \right) \right) , \end{aligned}$$
where \(S\left( t\right) =\frac{\sin t}{t}\) is the sinc kernel, and \(B\left( \xi \right) \) depends on \({\mu },\nu \) and \(\xi \). This reduces to the classical universality limit in the bulk when \(\mu =\nu \). We deduce applications to the zero distribution of \(K_{n}^{{\mu },\nu }\), and asymptotics for its derivatives.
  相似文献   

4.
Let {X n ; n≥1} be a sequence of independent copies of a real-valued random variable X and set S n =X 1+???+X n , n≥1. This paper is devoted to a refinement of the classical Kolmogorov–Marcinkiewicz–Zygmund strong law of large numbers. We show that for 0<p<2,
$\sum_{n=1}^{\infty}\frac{1}{n}\biggl(\frac{|S_{n}|}{n^{1/p}}\biggr)<\infty\quad \mbox{almost surely}$
if and only if
$\begin{cases}\mathbb{E}|X|^{p}<\infty &; \mbox{if }0 < p < 1,\\\mathbb{E}X=0,\ \sum_{n=1}^{\infty}\frac{|\mathbb{E}XI\{|X|\leq n\}|}{n}<\infty,\mbox{ and }\\\sum_{n=1}^{\infty}\frac{\int_{\min\{u_{n},n\}}^{n}\mathbb{P}(|X|>t)\,dt}{n}<\infty &; \mbox{if }p = 1,\\\mathbb{E}X=0\mbox{ and }\int_{0}^{\infty}\mathbb{P}^{1/p}(|X|>t)\,dt<\infty,&;\mbox{if }1 < p < 2,\end{cases}$
where \(u_{n}=\inf \{t:~\mathbb{P}(|X|>t)<\frac{1}{n}\}\), n≥1. Versions of the above result in a Banach space setting are also presented. To establish these results, we invoke the remarkable Hoffmann-Jørgensen (Stud. Math. 52:159–186, 1974) inequality to obtain some general results for sums of the form \(\sum_{n=1}^{\infty}a_{n}\|\sum_{i=1}^{n}V_{i}\|\) (where {V n ; n≥1} is a sequence of independent Banach-space-valued random variables, and a n ≥0, n≥1), which may be of independent interest, but which we apply to \(\sum_{n=1}^{\infty}\frac{1}{n}(\frac{|S_{n}|}{n^{1/p}})\).
  相似文献   

5.
In this paper, we prove some congruences conjectured by Z.-W. Sun: For any prime \(p>3\), we determine
$$\begin{aligned} \sum \limits _{k = 0}^{p - 1} {\frac{{{C_k}C_k^{(2)}}}{{{{27}^k}}}} \quad {\text { and }}\quad \sum \limits _{k = 1}^{p - 1} {\frac{{\left( {\begin{array}{l} {2k} \\ {k - 1} \\ \end{array}} \right) \left( { \begin{array}{l} {3k} \\ {k - 1} \\ \end{array} } \right) }}{{{{27}^k}}}} \end{aligned}$$
modulo \(p^2\), where \(C_k=\frac{1}{k+1}\left( {\begin{array}{c}2k\\ k\end{array}}\right) \) is the k-th Catalan number and \(C_k^{(2)}=\frac{1}{2k+1}\left( {\begin{array}{c}3k\\ k\end{array}}\right) \) is the second-order Catalan numbers of the first kind. And we prove that
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{D_k}{k}\equiv -q_p(2)+pq_p(2)^2\pmod {p^2}, \end{aligned}$$
where \(D_n=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+k\\ k\end{array}}\right) \) is the n-th Delannoy number and \(q_p(2)=(2^{{p-1}}-1)/p\) is the Fermat quotient.
  相似文献   

6.
Recently, Simon Plouffe has discovered a number of identities for the Riemann zeta function at odd integer values. These identities are obtained numerically and are inspired by a prototypical series for Apéry’s constant given by Ramanujan:
$\zeta(3)=\frac{7\pi^{3}}{180}-2\sum_{n=1}^{\infty}\frac {1}{n^{3}(e^{2\pi n}-1)}.$
Such sums follow from a general relation given by Ramanujan, which is rediscovered and proved here using complex analytic techniques. The general relation is used to derive many of Plouffe’s identities as corollaries. The resemblance of the general relation to the structure of theta functions and modular forms is briefly sketched.
  相似文献   

7.
For any prime \(p>3,\) we prove that
$$\begin{aligned} \sum _{k=0}^{p-1}\frac{3k+1}{(-8)^k}{2k\atopwithdelims ()k}^3\equiv p\left( \frac{-1}{p}\right) +p^3E_{p-3}\pmod {p^4}, \end{aligned}$$
where \(E_{0},E_{1},E_{2},\ldots \) are Euler numbers and \(\left( \frac{\cdot }{p}\right) \) is the Legendre symbol. This result confirms a conjecture of Z.-W. Sun. We also re-prove that for any odd prime \(p,\)
$$\begin{aligned} \sum _{k=0}^{\frac{p-1}{2}}\frac{6k+1}{(-512)^k}{2k\atopwithdelims ()k}^3\equiv p\left( \frac{-2}{p}\right) \pmod {p^2} \end{aligned}$$
using WZ method.
  相似文献   

8.
Define \(g_n(x)=\sum _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) ^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) x^k\) for \(n=0,1,2,\ldots \). Those numbers \(g_n=g_n(1)\) are closely related to Apéry numbers and Franel numbers. In this paper we establish some fundamental congruences involving \(g_n(x)\). For example, for any prime \(p>5\) we have
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{g_k(-1)}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{g_k(-1)}{k^2}\equiv 0\pmod p. \end{aligned}$$
This is similar to Wolstenholme’s classical congruences
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{1}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{1}{k^2}\equiv 0\pmod p \end{aligned}$$
for any prime \(p>3\).
  相似文献   

9.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

10.
We aim at evaluating the following class of series involving the product of the tail of two consecutive zeta function values
$$\sum\limits_{n=1}^{\infty}\left(\zeta(k)-1-\frac{1}{2^k}-\cdots-\frac{1}{n^k}\right)\left(\zeta(k+1)-1-\frac{1}{2^{k+1}}-\cdots-\frac{1}{n^{k+1}}\right),$$
where \({k\geq 2}\) is an integer. We show that the series can be expressed in terms of Riemann zeta function values and a special integral involving a polylogarithm function.
  相似文献   

11.
Let \(p_n\) denote the n-th prime number, and let \(d_n=p_{n+1}-p_{n}\). Under the Hardy–Littlewood prime-pair conjecture, we prove
$$\begin{aligned} \sum _{n\le X}\frac{\log ^{\alpha }d_n}{d_n}\sim {\left\{ \begin{array}{ll} \quad \frac{X\log \log \log X}{\log X}~\qquad \quad ~ &{}\alpha =-1,\\ \frac{X}{\log X}\frac{(\log \log X)^{1+\alpha }}{1+\alpha }\qquad &{}\alpha >-1, \end{array}\right. } \end{aligned}$$
and establish asymptotic properties for some series of \(d_n\) without the Hardy–Littlewood prime-pair conjecture.
  相似文献   

12.
We prove a conjecture of Okada giving an exact formula for a certain statistic for hook-lengths of partitions:
$\frac{1}{n!} \sum_{\lambda \vdash n} f_{\lambda}^2 \sum_{u \in \lambda} \prod_{i=1}^{r}\bigl(h_u^2 - i^2\bigr) = \frac{1}{2(r+1)^2} \binom{2r}{r}\binom{2r+2}{ r+1} \prod_{j=0}^{r} (n-j),$
where f λ is the number of standard Young tableaux of shape λ and h u is the hook length of the square u of the Young diagram of λ. We also obtain other similar formulas.
  相似文献   

13.
Let \(b_{5}(n)\) denote the number of 5-regular partitions of n. We find the generating functions of \(b_{5}(An+B)\) for some special pairs of integers (AB). Moreover, we obtain infinite families of congruences for \(b_{5}(n)\) modulo powers of 5. For example, for any integers \(k\ge 1\) and \(n\ge 0\), we prove that
$$\begin{aligned} b_{5}\left( 5^{2k-1}n+\frac{5^{2k}-1}{6}\right) \equiv 0 \quad (\mathrm{mod}\, 5^{k}) \end{aligned}$$
and
$$\begin{aligned} b_{5}\left( 5^{2k}n+\frac{5^{2k}-1}{6}\right) \equiv 0 \quad (\mathrm{mod}\, 5^{k}). \end{aligned}$$
  相似文献   

14.
Let \(B_\ell (n)\) denote the number of \(\ell \)-regular bipartitions of n. In this paper, we prove several infinite families of congruences satisfied by \(B_\ell (n)\) for \(\ell \in {\{5,7,13\}}\). For example, we show that for all \(\alpha >0\) and \(n\ge 0\),
$$\begin{aligned} B_5\left( 4^\alpha n+\frac{5\times 4^\alpha -2}{6}\right)\equiv & {} 0 \ (\text {mod}\ 5),\\ B_7\left( 5^{8\alpha }n+\displaystyle \frac{5^{8\alpha }-1}{2}\right)\equiv & {} 3^\alpha B_7(n)\ (\text {mod}\ 7) \end{aligned}$$
and
$$\begin{aligned} B_{13}\left( 5^{12\alpha }n+5^{12\alpha }-1\right) \equiv B_{13}(n)\ (\text {mod}\ 13). \end{aligned}$$
  相似文献   

15.
Let \(\Phi _{n}(x)=e^x-\sum _{j=0}^{n-2}\frac{x^j}{j!}\) and \(\alpha _{n} =n\omega _{n-1}^{\frac{1}{n-1}}\) be the sharp constant in Moser’s inequality (where \(\omega _{n-1}\) is the area of the surface of the unit \(n\)-ball in \(\mathbb {R}^n\)), and \(dV\) be the volume element on the \(n\)-dimensional hyperbolic space \((\mathbb {H}^n, g)\) (\(n\ge {2}\)). In this paper, we establish the following sharp Moser–Trudinger type inequalities with the exact growth condition on \(\mathbb {H}^n\):
For any \(u\in {W^{1,n}(\mathbb {H}^n)}\) satisfying \(\Vert \nabla _{g}u\Vert _{n}\le {1}\), there exists a constant \(C(n)>0\) such that
$$\begin{aligned} \int _{\mathbb {H}^n}\frac{\Phi _{n}(\alpha _{n}|u|^{\frac{n}{n-1}})}{(1+|u|)^{\frac{n}{n-1}}}dV \le {C(n)\Vert u\Vert _{L^n}^{n}}. \end{aligned}$$
The power \(\frac{n}{n-1}\) and the constant \(\alpha _{n}\) are optimal in the following senses:
  1. (i)
    If the power \(\frac{n}{n-1}\) in the denominator is replaced by any \(p<\frac{n}{n-1}\), then there exists a sequence of functions \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha _{n}(|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV \rightarrow {\infty }. \end{aligned}$$
     
  2. (ii)
    If \(\alpha >\alpha _{n}\), then there exists a sequence of function \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha (|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV\rightarrow {\infty }, \end{aligned}$$
    for any \(p\ge {0}\).
     
This result sharpens the earlier work of the authors Lu and Tang (Adv Nonlinear Stud 13(4):1035–1052, 2013) on best constants for the Moser–Trudinger inequalities on hyperbolic spaces.
  相似文献   

16.
We introduce new classes of Ramanujan-like series for \(\frac{1}{\pi }\), by devising methods for evaluating harmonic sums involving squared central binomial coefficients, such as the Ramanujan-type series
$$\begin{aligned} \sum _{n=1}^{\infty } \frac{\left( {\begin{array}{c}2 n\\ n\end{array}}\right) ^2 \left( H_n^2+H_n^{(2)}\right) }{16^n (2 n-1)} = \frac{4 \pi }{3}-\frac{32 \ln ^2(2) - 32 \ln (2) + 16 }{\pi } \end{aligned}$$
introduced in this article. While the main technique used in this article is based on the evaluation of a parameter derivative of a beta-type integral, we also show how new integration results involving complete elliptic integrals may be used to evaluate Ramanujan-like series for \(\frac{1}{\pi }\) containing harmonic numbers.
  相似文献   

17.
In this paper, the authors investigate the general solution and generalized Hyers–Ulam stability of the n-dimensional quartic functional equation of the form
$$\begin{aligned} f\left( \sum _{i=1}^{n}x_i\right)&= \sum _{1 \le i<j< k< l\le n} f\left( x_i+x_j+x_k+x_l\right) +\left( -n+4\right) \nonumber \\ {}&\sum _{1 \le i< j< k \le n} f\left( x_i+x_j+x_k\right) +\left( \frac{n^2-7n+12}{2}\right) \sum _{ \begin{array}{c} 1=i;\\ i\ne j \end{array}}^{n} f\left( x_i+x_j\right) \nonumber \\&- \sum _{i=1}^{n} f\left( 2x_i\right) + \left( \frac{-n^3+9n^2-26n+120}{6}\right) \ \ \sum _{i=1}^{n}\left( \frac{f(x_i)+f(-x_i)}{2}\right) \end{aligned}$$
where n is a positive integer with \({\mathbb {N}}- \{0,1,2,3,4\}\). The stability of this quartic functional equation is introduced in Banach space using direct and fixed point methods.
  相似文献   

18.
A new Stirling series as continued fraction   总被引:1,自引:0,他引:1  
We introduce the following new Stirling series
$ n!\sim \sqrt{2\pi n}\left( \frac{n}{e}\right) ^{n}\exp \frac{1}{12n+\frac{ \frac{2}{5}}{n+\frac{\frac{53}{210}}{n+\frac{\frac{195}{371}}{n+\frac{\frac{ 22,\!999}{22,\!737}}{n+\ddots}}}}}, $
as a continued fraction, which is faster than the classical Stirling series.
  相似文献   

19.
The goal of this paper is the study of a transformation concerning the general K-fold finite sums of the form
$$\begin{aligned} \sum _{N\ge n_1\ge \cdots \ge n_K\ge 1}\frac{1}{b_{n_K}}\cdot \prod _{j=1}^{K-1}\frac{1}{a_{n_j}}, \end{aligned}$$
where \((K,N)\in \mathbb {N}^2\) and \(\{a_n\}_{n=1}^{\infty }\), \(\{b_n\}_{n=1}^{\infty }\) are appropriate real sequences. In the application part of our paper we apply the developed transformation to two special parametric multiple zeta-type series that generalize the well-know formula \(\zeta ^\star (\{2\}_K,1)=2\zeta (2K+1)\), \(K\in \mathbb {N}\). As a corollary of our parametric results, we also prove several sum formulas involving multiple zeta-star values.
  相似文献   

20.
We provide an elementary proof of the left-hand side of the following inequality and give a new upper bound for it.
$$\begin{aligned} \bigg [\frac{n!}{x-(x^{-1/n}+\alpha )^{-n}}\bigg ]^{\frac{1}{n+1}}&<((-1)^{n-1}\psi ^{(n)})^{-1}(x) \\&<\bigg [\frac{n!}{x-(x^{-1/n}+\beta )^{-n}}\bigg ]^{\frac{1}{n+1}}, \end{aligned}$$
where \(\alpha =[(n-1)!]^{-1/n}\) and \(\beta =[n!\zeta (n+1)]^{-1/n}\), which was proved in Batir (J Math Anal Appl 328:452–465, 2007), and we prove the following inequalities for the inverse of the digamma function \(\psi \).
$$\begin{aligned} \frac{1}{\log (1+e^{-x})}<\psi ^{-1}(x)< e^{x}+\frac{1}{2}, \quad x\in \mathbb {R}. \end{aligned}$$
The proofs are based on nice applications of the mean value theorem for differentiation and elementary properties of the polygamma functions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号