首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
By introducing the fractional derivatives in the sense of Caputo, we use the adomian decomposition method to construct the approximate solutions for the cubic nonlinear fractional Schordinger equation with time and space fractional derivatives. The exact solution of the cubic nonlinear Schrodinger equation is given as a special case of our approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equation.  相似文献   

2.
In this paper, a variable-order fractional derivative nonlinear cable equation is considered. It is commonly accepted that fractional differential equations play an important role in the explanation of many physical phenomena. For this reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of class of fractional partial differential equation with variable coefficient of fractional differential equation in various continues functions of spatial and time orders. Our main aim is to generalize the Chebyshev cardinal operational matrix to the fractional calculus. Finally, illustrative examples are included to demonstrate the validity and applicability of the presented technique.  相似文献   

3.
For a mixed-type equation with the Riemann–Liouville partial fractional derivative we study a problem where the boundary condition contains a linear combination of generalized fractional operators with the Gauss hypergeometric function. We find a solution to the considered problem explicitly by solving an equation with fractional derivatives of various orders and prove the uniqueness of the solution for various values of parameters of the mentioned operators.  相似文献   

4.
《随机分析与应用》2013,31(5):1209-1233
Abstract

In the paper we compute the explicit form of the fractional chaos decomposition of the solution of a fractional stochastic bilinear equation with the drift in the fractional chaos of order one and initial condition in a finite fractional chaos. The large deviations principle is also obtained for the one-dimensional distributions of the solution of the equation perturbed by a small noise.  相似文献   

5.
联合Duffing方程和Van der Pol方程的非线性分数阶微分方程   总被引:1,自引:0,他引:1  
本文研究了Adomian分解方法在非线性分数阶微分方程求解中的应用. 利用Riemann-Liouville分数阶导数和Adomian分解方法, 将Duffing方程和Van der Pol方程联合在一个分数阶方程中,并获得了此方程的解析近似解.  相似文献   

6.
In this paper, we focus on maximum principles of a time–space fractional diffusion equation. Maximum principles for classical solution and weak solution are all obtained by using properties of the time fractional derivative operator and the fractional Laplace operator. We deduce maximum principles for a full fractional diffusion equation, other than time-fractional and spatial-integer order diffusion equations.  相似文献   

7.
The purpose of this paper is to establish an averaging principle for stochastic fractional partial differential equation of order α > 1 driven by a fractional noise. We prove the existence and uniqueness of the global mild solution for the considered equation by the fixed point principle. The solutions for SPDEs with fractional noises can be approximated by the solution for the averaged stochastic systems in the sense of p-moment under some suitable assumptions.  相似文献   

8.
应用Gteen函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.  相似文献   

9.
研究了抽象空间中缓增分数阶微分方程解的吸引性.建立了Cauchy问题存在全局吸引解的充分条件.揭示了缓增分数阶导数求解分数微分方程解的特征.  相似文献   

10.
In this paper, we shall study a fourth-order stochastic heat equation driven by a fractional noise, which is fractional in time and white in space. We will discuss the existence and uniqueness of the solution to the equation. Furthermore, the regularity of the solution will be obtained. On the other hand, the large deviation principle for the equation with a small perturbation will be established through developing a classical method.  相似文献   

11.
In this paper, we compared two different methods, one numerical technique, viz Legendre multiwavelet method, and the other analytical technique, viz optimal homotopy asymptotic method (OHAM), for solving fractional‐order Kaup–Kupershmidt (KK) equation. Two‐dimensional Legendre multiwavelet expansion together with operational matrices of fractional integration and derivative of wavelet functions is used to compute the numerical solution of nonlinear time‐fractional KK equation. The approximate solutions of time fractional Kaup–Kupershmidt equation thus obtained by Legendre multiwavelet method are compared with the exact solutions as well as with OHAM. The present numerical scheme is quite simple, effective, and expedient for obtaining numerical solution of fractional KK equation in comparison to analytical approach of OHAM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
We focus on a numerical scheme applied for a fractional oscillator equation in a finite time interval. This type of equation includes a complex form of left- and right-sided fractional derivatives. Its analytical solution is represented by a series of left and right fractional integrals and therefore is difficult in practical calculations. Here we elaborated two numerical schemes being dependent on a fractional order of the equation. The results of numerical calculations are compared with analytical solutions. Then we illustrate convergence and stability of our schemes.  相似文献   

13.
For a mixed-type equation we study a problem with generalized fractional integrodifferentiation operators in the boundary condition. We prove its unique solvability under inequality-type conditions imposed on the known functions for various orders of fractional integrodifferentiation operators. We prove the existence of a solution to the problem by reducing the latter to a fractional differential equation.  相似文献   

14.
We consider an initial-boundary value problem for a multidimensional fractional diffusion equation. The aim of the paper is to construct an integral transformation which establishes a biunique correspondence between the fractional diffusion equation and the hyperbolic one. This transformation can be used for proving the uniqueness of the solution of the inverse problem for the fractional diffusion equation.  相似文献   

15.
In this paper, the solution of the multi-order differential equations, by using Mellin transform, is proposed. It is shown that the problem related to the shift of the real part of the argument of the transformed function, arising when the Mellin integral operates on the fractional derivatives, may be overcame. Then, the solution may be found for any fractional differential equation involving multi-order fractional derivatives (or integrals). The solution is found in the Mellin domain, by solving a linear set of algebraic equations, whose inverse transform gives the solution of the fractional differential equation at hands.  相似文献   

16.
In the characteristic triangle for a hyperbolic equation of the second kind we study a nonlocal problem, where the boundary value condition contains a linear combination of Riemann–Liouville fractional integro-differentiation operators. We establish variation intervals of orders of fractional integro-differentiation operators, taking into account parameters of the considered equation with which the mentioned problem has either a unique solution or more than one solution.  相似文献   

17.
本文首次把Poisson随机测度引入分数倒向重随机微分方程,基于可料的Girsanov变换证明由Brown运动、Poisson随机测度和Hurst参数在(1/2,1)范围内的分数Brown运动共同驱动的半线性倒向重随机微分方程解的存在唯一性.在此基础上,本文定义一类半线性随机积分偏微分方程的随机黏性解,并证明该黏性解由带跳分数倒向重随机微分方程的解唯一地给出,对经典的黏性解理论作出有益的补充.  相似文献   

18.
We study the relationship between the solutions of abstract differential equations with fractional derivatives and their stability with respect to the perturbation by a bounded operator. Besides, we obtain representations for the solution of an inhomogeneous equation and for an equation containing a fractional power of the generator of a cosine operator function.  相似文献   

19.
基于分数阶Taylor(泰勒)级数展开原理,建立单相延迟一阶分数阶近似方程,获得分数阶热传导方程.针对短脉冲激光加热问题建立分数阶热传导方程组,并运用Laplace(拉普拉斯)变换方法进行求解,给出非Gauss(高斯)时间分布的激光内热源温度场解析解.针对具体算例数值研究温度波传播特性.结果表明热传播速度与分数阶阶次有关,分数阶阶次增加,热传播速度减小,温度变化幅度增加.分数阶方程可以用于描述介于扩散方程和热波方程间的热传输过程,且对热传播机制与分数阶热传导方程中分数阶项的关系做了深入剖析.  相似文献   

20.
第一部分,介绍分数阶导数的定义和著名的Mittag—Leffler函数的性质.第二部分,利用单调迭代方法给出了具有2序列Riemann—Liouville分数阶导数微分方程初值问题解的存在性和唯一性.第三部分,利用上下解方法和Schauder不动点定理给出了具有2序列Riemann—Liouville分数阶导数微分方程周期边值问题解的存在性.第四部分,利用Leray—Schauder不动点定理和Banach压缩映像原理建立了具有n序列Riemann—Liouville分数阶导数微分方程初值问题解的存在性、唯一性和解对初值的连续依赖性.第五部分,利用锥上的不动点定理给出了具有Caputo分数阶导数微分方程边值问题,在超线性(次线性)条件下C310,11正解存在的充分必要条件.最后一部分,通过建立比较定理和利用单调迭代方法给出了具有Caputo分数阶导数脉冲微分方程周期边值问题最大解和最小解的存在性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号