首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main objective of this paper consists in modelling, optimizing, and controlling container transfer operations inside intermodal terminals. More specifically, maritime container terminals are here considered, involving three kinds of transportation modes, i.e., maritime, rail, and road transport. Generally speaking, an intermodal port terminal can be seen as a system of container flows with two interfaces, towards the hinterland and towards the sea, respectively. Moreover, inside a terminal, unloading operations of inbound containers, container storage, and loading operations of outbound containers are carried out. A simple model for maritime container terminals is proposed in this paper. In the model, a system of queues represents the standing of containers and their movements inside the terminal. The dynamic evolutions of these queues are described by discrete-time equations, where the state variables represent the queue lengths and the control variables take into account the utilization of terminal resources such as load/unload handling rates. On the basis of the proposed model, an optimization problem is defined that consists in minimizing the transfer delays of containers in the terminal. The problem is stated as an optimal control problem whose solution is sought by adopting a receding-horizon strategy.   相似文献   

2.
This paper addresses the joint quay crane and truck scheduling problem at a container terminal, considering the coordination of the two types of equipment to reduce their idle time between performing two successive tasks. For the unidirectional flow problem with only inbound containers, in which trucks go back to quayside without carrying outbound containers, a mixed-integer linear programming model is formulated to minimize the makespan. Several valid inequalities and a property of the optimal solutions for the problem are derived, and two lower bounds are obtained. An improved Particle Swarm Optimization (PSO) algorithm is then developed to solve this problem, in which a new velocity updating strategy is incorporated to improve the solution quality. For small sized problems, we have compared the solutions of the proposed PSO with the optimal solutions obtained by solving the model using the CPLEX software. The solutions of the proposed PSO for large sized problems are compared to the two lower bounds because CPLEX could not solve the problem optimally in reasonable time. For the more general situation considering both inbound and outbound containers, trucks may go back to quayside with outbound containers. The model is extended to handle this problem with bidirectional flow. Experiment shows that the improved PSO proposed in this paper is efficient to solve the joint quay crane and truck scheduling problem.  相似文献   

3.
In the Port of Singapore, as in many other ports, space has to be allocated in yards for inbound and transit cargo. Requests for container space occur at different times during the planning period, and are made for different quantities and sizes of containers. In this paper, we study space allocation under these conditions. We reduce the problem to a two-dimensional packing problem with a time dimension. Since the problem is NP-hard, we develop heuristic algorithms, using tabu search, simulated annealing, a genetic algorithm and ‘squeaky wheel’ optimization, as solution approaches. Extensive computational experiments compare the algorithms, which are shown to be effective for the problem.  相似文献   

4.
针对集装箱码头提箱作业过程中,由于外集卡的提箱顺序与目标箱在堆场的堆存位置不匹配导致大量翻箱这一难题,以码头的作业成本和外集卡的延误成本之和最小为目标,建立堆场翻箱与外集卡提箱顺序同步优化模型,优化外集卡的提箱顺序、龙门吊的任务分配以及翻箱方案。设计基于动态规划的启发式算法求解模型,并利用算例对模型与算法的有效性进行了验证。结果表明:与目前码头普遍采用的提箱方式相比,通过调整外集卡提箱顺序并同时优化翻箱方案以及龙门吊的任务分配可以降低堆场翻箱率,减少龙门吊的移动成本,从而节省提箱作业的总成本。  相似文献   

5.
基于垂岸式自动化集装箱码头不同装船周期出口集装箱堆场多贝位混合堆存、场桥大车在贝位间频繁移动取箱装船特点,考虑装船发箱时场桥移动等操作时间及翻箱取箱次数对出口箱装船效率和连续性影响,建立多贝位出口箱装船堆场翻箱模型,提出两阶段贪婪禁忌搜索算法,将翻箱规则嵌入算法中,有效限制算法时间和解空间增长速度。通过算例,将提出的翻箱规则与现有常见翻箱规则进行对比,验证模型及算法的有效性与实用性。结果表明,提出的模型和算法可以在合理的求解时间内输出较优的翻箱方案,减少装船时场桥发箱作业时间,提高装船作业效率。  相似文献   

6.
Due to the variety of technical equipments and terminal layouts, research has produced a multitude of optimization models for seaside operations planning in container terminals. To provide a support in modeling problem characteristics and in suggesting applicable algorithms this paper reviews the relevant literature. For this purpose new classification schemes for berth allocation problems and quay crane scheduling problems are developed. Particular focus is put on integrated solution approaches which receive increasing importance for the terminal management.  相似文献   

7.
Emissions from idle truck engines are a main source of pollution at container terminals. In this study, we focus on reducing such emission from waiting trucks as well as the related crane operations with a new truck arrival control method that gives individual truck limited time slots for entry. We develop a method to optimize the time slot assignment for individual trucks, aiming at minimizing total emissions from trucks and cranes at import yards. The method applies discrete event simulation to estimate total truck waiting times and crane moving distance, and then applies a genetic algorithm to minimize the generated emissions from these trucks and cranes. The experiment result shows that the truck arrivals should be controlled based on the stacking of import containers, and that such control is necessary for reducing truck idling emissions at a congested container terminal.  相似文献   

8.
This paper has been motivated by the study of a real application, the transshipment container terminal of Gioia Tauro in Italy. The activities in a container terminal concern with the movement of containers from/to mother vessels and feeders and with the handling and storage of containers in the yard. For such type of applications both operational (e.g., scheduling) and tactical (e.g., planning) models, currently available in the literature, are not useful in terms of operations management and resources optimization. Indeed, the former models are too detailed for the complexity of the systems, while the latter are not able to capture the operational constraints in representing those activities which limit the nominal capacity. Herein, the container terminal, or more in general a service or production system, is represented as a network of complex substructures or platforms. The idea is to formalize the concept of platform capacity, which is used to represent the operational aspects of the container terminal in a mathematical model for the tactical planning. The problem, which consists in finding an allocation of resources in each platform in order to minimize the total delay on the overall network and on the time horizon, is modelled by a mathematical programming formulation for which we carry out a computational analysis using CPLEX-MIP solver. Moreover, we present a dynamic programming based heuristic to solve larger instances in short computational time. On all but one of the smaller instances, the heuristic solutions are also optimal. On the larger instances, the maximum gap, i.e. the percentage deviation, between the heuristic solutions and the best solutions computed by CPLEX-MIP within the time limit of 3600 s, has been 6.3%.  相似文献   

9.
为提高集装箱码头堆场系统的运作效率,本文针对集装箱码头进出口堆场的空间分配问题,建立了在“作业面”作业模式下以集卡水平运输距离最短为目标,考虑各箱位作业量均衡的集装箱箱位分配模型,对计划时段内的进出口箱箱位分配进行全局优化.采用矩阵式的实数编码方式的遗传算法对模型进行了求解,使用最优解保存策略保证了最终的优化结果.最后通过仿真算例,验证了本文所建立的箱位分配模型对优化堆场空间资源分配,提高进出口箱流转速度的适用性.  相似文献   

10.
在集装箱码头的进口箱堆场中,码头预约机制、待提箱的实时位置和场桥作业调度方案是制约堆场作业效率和堵塞情况的关键。为缓解进口箱堆场的拥塞情况并提高作业效率,在固定的预约时段内,考虑实时压箱量最少的翻箱规则,兼顾场桥间不可跨越和保持安全间距等现实约束,以场桥最长完工时间最小为目标,构建数学优化模型,设计了嵌入修复算子的改进遗传算法用于求解;通过算例实验验证了算法的有效性和方案的优越性,可为堆场实际作业提供决策参考。  相似文献   

11.
为降低送箱集卡到场的不确定性对出口箱堆存和装船效率的影响,以最小化堆场进出场作业系统总作业时间为上层模型的目标,以最小化同一批入场出口箱的堆存时间下层模型的目标,构建了双层混合整数规划模型为进出场的出口箱分配箱位并优化场桥调度。设计改进的遗传模拟退火算法求解上层模型可得出口箱箱位分配方案,求解下层模型可得预翻箱和场桥调度方案,通过不断平衡上下层最优解使堆场堆存和装船作业效率最优。通过数值实验验证了算法和调度策略有效性,研究结果可丰富集装箱码头运营系统优化理论,为提高出口箱堆场作业效率提供决策参考。  相似文献   

12.
Inbound and outbound containers are temporarily stored in the storage yard at container terminals. A combination of container demand increase and storage yard capacity scarcity create complex operational challenges for storage yard managers. This paper presents an in-depth overview of storage yard operations, including the material handling equipment used, and highlights current industry trends and developments. A classification scheme for storage yard operations is proposed and used to classify scientific journal papers published between 2004 and 2012. The paper also discusses and challenges the current operational paradigms on storage yard operations. Lastly, the paper identifies new avenues for academic research based on current trends and developments in the container terminal industry.  相似文献   

13.
This paper studies an operational problem arising at a container terminal, consisting of scheduling a yard crane to carry out a set of container storage and retrieval requests in a single container block. The objective is to minimize the total travel time of the crane to carry out all requests. The block has multiple input and output (I/O) points located at both the seaside and the landside. The crane must move retrieval containers from the block to the I/O points, and must move storage containers from the I/O points to the block. The problem is modeled as a continuous time integer programming model and the complexity is proven. We use intrinsic properties of the problem to propose a two-phase solution method to optimally solve the problem. In the first phase, we develop a merging algorithm which tries to patch subtours of an optimal solution of an assignment problem relaxation of the problem and obtain a complete crane tour without adding extra travel time to the optimal objective value of the relaxed problem. The algorithm requires common I/O points to patch subtours. This is efficient and often results in obtaining an optimal solution of the problem. If an optimal solution has not been obtained, the solution of the first phase is embedded in the second phase where a branch-and-bound algorithm is used to find an optimal solution. The numerical results show that the proposed method can quickly obtain an optimal solution of the problem. Compared to the random and Nearest Neighbor heuristics, the total travel time is on average reduced by more than 30% and 14%, respectively. We also validate the solution method at a terminal.  相似文献   

14.
We address a truck scheduling problem that arises in intermodal container transportation, where containers need to be transported between customers (shippers or receivers) and container terminals (rail or maritime) and vice versa. The transportation requests are handled by a trucking company which operates several depots and a fleet of homogeneous trucks that must be routed and scheduled to minimize the total truck operating time under hard time window constraints imposed by the customers and terminals. Empty containers are considered as transportation resources and are provided by the trucking company for freight transportation. The truck scheduling problem at hand is formulated as Full-Truckload Pickup and Delivery Problem with Time Windows (FTPDPTW) and is solved by a 2-stage heuristic solution approach. This solution method was specially designed for the truck scheduling problem but can be applied to other problems as well. We assess the quality of our solution approach on several computational experiments.  相似文献   

15.
Yard cranes are the most popular container handling equipment for loading containers onto or unloading containers from trucks in container yards of land scarce port container terminals. However, such equipment is bulky, and very often generates bottlenecks in the container flow in a terminal because of their slow operations. Hence, it is essential to develop good yard crane work schedules to ensure a high terminal throughput. This paper studies the problem of scheduling a yard crane to perform a given set of loading/unloading jobs with different ready times. The objective is to minimize the sum of job waiting times. A branch and bound algorithm is proposed to solve the scheduling problem optimally. Efficient and effective algorithms are proposed to find lower bounds and upper bounds. The performance of the proposed branch and bound algorithm is evaluated by a set of test problems generated based on real life data. The results show that the algorithm can find the optimal sequence for most problems of realistic sizes.  相似文献   

16.
This paper investigates a drayage problem, where a fleet of trucks must ship container loads from a port to importers and from exporters to the same port, without separating trucks and containers during customer service. We present three formulations for this problem that are valid when each truck carries one container. For the third formulation, we also assume that the arc costs are equal for all trucks, and then we prove that its continuous relaxation admits integer optimal solutions by checking that its constraint matrix is totally unimodular. Under the same hypothesis on costs, even the continuous relaxations of the first two models are proved to admit an integer optimal solution. Finally, the third model is transformed into a circulation problem, that can be solved by efficient network algorithms.  相似文献   

17.
针对集装箱码头泊位需要定期维护的实际特征,研究了泊位疏浚情况下连续型泊位和动态岸桥联合调度问题。首先,建立了一个以船舶周转时间最小为目标的整数线性规划模型;其次,针对问题特性设计了三种启发式算法。为了分析泊位疏浚对码头工作的影响并验证模型正确性和算法有效性,分别对未考虑泊位疏浚和考虑泊位疏浚两种调度情形,进行了小规模与大规模问题输入的多组测试。三种算法在小规模输入上均取得了相同于CPLEX的精确解,从而验证了算法的有效性;进一步通过对比分析这些算法在大规模输入中的运行结果,验证其有效性能。  相似文献   

18.
The inland transportation takes a significant portion of the total cost that arises from intermodal transportation. In addition, there are many parties (shipping lines, haulage companies, customers) who share this operation as well as many restrictions that increase the complexity of this problem and make it NP-hard. Therefore, it is important to create an efficient strategy to manage this process in a way to ensure all parties are satisfied. This paper investigates the pairing of containers/orders in drayage transportation from the perspective of delivering paired containers on 40-ft truck and/or individual containers on 20-ft truck, between a single port and a list of customer locations. An assignment mixed integer linear programming model is formulated, which solves the problem of how to combine orders in delivery to save the total transportation cost when orders with both single and multiple destinations exist. In opposition to the traditional models relying on the vehicle routing problem with simultaneous pickups and deliveries and time windows formulation, this model falls into the assignment problem category which is more efficient to solve on large size instances. Another merit for the proposed model is that it can be implemented on different variants of the container drayage problem: import only, import–inland and import–inland–export. Results show that in all cases the pairing of containers yields less cost compared to the individual delivery and decreases empty tours. The proposed model can be solved to optimality efficiently (within half hour) for over 300 orders.  相似文献   

19.
In container terminals, the actual arrival time and handling time of a vessel often deviate from the scheduled ones. Being the input to yard space allocation and crane planning, berth allocation is one of the most important activities in container terminals. Any change of berth plan may lead to significant changes of other operations, deteriorating the reliability and efficiency of terminal operations. In this paper, we study a robust berth allocation problem (RBAP) which explicitly considers the uncertainty of vessel arrival delay and handling time. Time buffers are inserted between the vessels occupying the same berthing location to give room for uncertain delays. Using total departure delay of vessels as the service measure and the length of buffer time as the robustness measure, we formulate RBAP to balance the service level and plan robustness. Based on the properties of the optimal solution, we develop a robust berth scheduling algorithm (RBSA) that integrates simulated annealing and branch-and-bound algorithm. To evaluate our model and algorithm design, we conduct computational study to show the effectiveness of the proposed RBSA algorithm, and use simulation to validate the robustness and service level of the RBAP formulation.  相似文献   

20.
A heuristic algorithm using new block strategy for the heterogeneous single and multiple containers loading problem (CLP) is proposed in this paper. In order to solve the single CLP, this algorithm fills unused spaces with the homogeneous load-blocks of identically oriented boxes and splits residual space into three child-spaces starting with an empty container. An initial container pattern is first built applying this approach recursively until all boxes are stowed or no unused spaces are left. And then, alternative container patterns are generated after replacing the load-blocks of the pattern-determining spaces in the initial container pattern with the alternative-blocks previously stored. Finally, an improvement procedure compares these alternatives with the initial container pattern to identify an improved container pattern. An algorithm for the multiple CLP uses the single CLP algorithm to generate an initial solution and uses improvement procedures to improve the initial solution. Numerical experiments with 715 test cases for the single CLP and 47 test cases for the multiple the CLP revealed the excellent performance of this algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号