首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We study large time asymptotic behavior of solutions to the periodic problem for the nonlinear damped wave equation
$ \left\{ {l} u_{tt}+2\alpha u_{t}-\beta u_{xx}=-\lambda \left| u\right| ^{\sigma}u,\text{ }x\in \Omega ,t >0 , \\ u(0,x)=\phi \left( x\right) ,\text{}u_{t}(0,x)=\psi \left( x\right) ,\text{ }x\in \Omega , \right. $ \left\{ \begin{array}{l} u_{tt}+2\alpha u_{t}-\beta u_{xx}=-\lambda \left| u\right| ^{\sigma}u,\text{ }x\in \Omega ,t >0 , \\ u(0,x)=\phi \left( x\right) ,\text{}u_{t}(0,x)=\psi \left( x\right) ,\text{ }x\in \Omega , \end{array} \right.  相似文献   

2.
我们考虑了一类原型为$$\begin{cases}u_t-\Delta u=\overrightarrow{b}(x,t)\cdot\nabla u+\gamma|\nabla u|^2-\text{div}{\overrightarrow{F}(x,t)}+f(x,t), &(x,t)\in \Omega_T,\\ u(x,t)=0,&(x,t)\in\Gamma_T,\\ u(x,0)=u_0(x), &x\in\Omega,\end{cases}$$的一类抛物方程. 其中, 函数$|\overrightarrow{b}(x,t)|^2,|\overrightarrow{F}(x,t)|^2,f(x,t)$位于空间$L^r{(0,T;L^q(\Omega))}$, $\gamma$是一个正常数. 在源项和梯度的系数项在空间$L^r{(0,T;L^q(\Omega))}$具有合适的可积条件下, 本文的目的在于证明先验的$L^\infty$估计以及方程存在有界解. 主要的方法包括通过正则化建立扰动问题, 用非线性的检验函数实现Stampacchia迭代技术以及极限过程中的紧性论断.  相似文献   

3.
In this paper, we study the following semi-linear elliptic equation $$-Δ_H^nu=|u|^{p-2}u,\qquad\qquad (0.1)$$ in the whole Hyperbolic space $\mathbb{H}^n$,where n ≥ 3, p › 2n/(n-2). We obtain some regularity results for the radial singular solutions of problem (0.1). We show that the singular solution $u^∗$ with $lim_{t → 0}(sinht)^{\frac{2}{p-2}}⋅u(t)=±(\frac{2}{p-2}(n-2-\frac{2}{p-2})^{\frac{1}{p-2}}$ belongs to the closure (in the natural topology given by $H¹_{loc}(\mathbb{H}^N)∩L^p_{loc}(H^N))$ of the set of smooth classical solutions to the Eq. (0.1). In contrast, we also prove that any oscillating radial solutions of (0.1) on $\mathbb{H}^N$\{0} fails to be in the space $H¹_{loc}(\mathbb{H}^N)∩L^p_{loc}(H^N)$.  相似文献   

4.
In this paper, we consider the following nonlinear Kirchhoff wave equation
$\left\{\begin{array}{l}u_{tt}-\frac{\partial }{\partial x}(\mu (u,\Vert u_{x}\Vert ^{2})u_{x})=f(x,t,u,u_{x},u_{t}),\quad 0
(1)
where \(\widetilde{u}_{0}\), \(\widetilde{u}_{1}\), μ, f, g are given functions and \(\Vert u_{x}\Vert ^{2}=\int_{0}^{1}u_{x}^{2}(x,t)dx.\) To the problem (1), we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved by applying the Faedo–Galerkin method and the weak compact method. In particular, motivated by the asymptotic expansion of a weak solution in only one, two or three small parameters in the researches before now, an asymptotic expansion of a weak solution in many small parameters appeared on both sides of (1)1 is studied.
  相似文献   

5.
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εh_l~1(x) + ε~2h_l~2(x),y=-x- ε(f_n~1(x)y~(2p+1) + g_m~1(x)) + ∈~2(f_n~2(x)y~(2p+1) + g_m~2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials h_l~1 and h_l~2 have degree l;f_n~1and f_n~2 have degree n;and g_m~1,g_m~2 have degree m.p ∈ N and[·]denotes the integer part function.  相似文献   

6.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

7.
In this paper, the periodic boundary problem and the initial value problem for the nonlinear system of parabolic type $\[{u_t} = (grad\varphi (u))\]$ are studied, where $\[u = ({u_1}, \cdots ,{u_N})\]$ is an N-dimensional vector valued function, $\[\varphi (u)\]$ is a strict convex function of vector variable $\[u\]$, and its matrix of derivatives of second order is zero-definite at $\[u = 0\]$. This system is degenerate. The definition of the generalized solution of the problem: $\[u(x,t) \in {L_\infty }((0,T);{L_2}(R)),\]$, grad $\[\varphi (u) \in {L_\infty }((0,T);W_2^{(1)}(R)),\]$ and it satisfies appropriate integral relation. The existence and uniqueness of the generalized solution of the problem are proved. When N=1, the system is the commonly so-called degenerate partial differential equation of filtration type.  相似文献   

8.
9.
LetΩRn be a bounded domain with a smooth boundary.We consider the longtime dynamics of a class of damped wave equations with a nonlinear memory term utt+αut-△u-∫0t 0μ(t-s)|u(s)| βu(s)ds + g(u)=f.Based on a time-uniform priori estimate method,the existence of the compact global attractor is proved for this model in the phase space H10(Ω)×L2(Ω).  相似文献   

10.
In this paper,\ we study fractional nonlinear Schrodinger equation (FNLS) with periodic boundary condition $$ \textbf{i}u_{t}=-(-\Delta)^{s_{0}} u-V*u-\epsilon f(x)|u|^4u,\ ~~x\in \mathbb{T}, ~~t\in \mathbb{R}, ~~s_{0}\in (\frac12,1),~~~~~~~~~~~~~~~~~~~~~~~~~~~~(0.1) $$ where $(-\Delta)^{s_{0}}$ is the Riesz fractional differentiation defined in [21] and $V*$ is the Fourier multiplier defined by $\widehat{V*u}(n)=V_n\widehat{u}(n),\ V_n\in\left[-1,1\right],$ and $f(x)$ is Gevrey smooth. We prove that for $0\leq|\epsilon|\ll1$ and appropriate $V$,\ the equation (0.1) admits a full dimensional KAM torus in the Gevrey space satisfying $ \frac12e^{-rn^{\theta}}\leq \left|q_n\right|\leq 2e^{-rn^{\theta}}, \theta\in (0,1),$ which generalizes the results given by [8-10] to fractional nonlinear Schrodinger equation.  相似文献   

11.
In this paper, we consider the viscoelastic wave equation with a delay term in internal feedbacks; namely, we investigate the following problem
(x,t)- u(x,t)+_0^tg(t-s)u(x,s)ds+_1u_t(x,t)+_2 u_t(x,t-)=0u_{tt}(x,t)-\Delta u(x,t)+\int\limits_{0}^{t}g(t-s){\Delta}u(x,s){d}s+\mu_{1}u_{t}(x,t)+\mu_{2} u_{t}(x,t-\tau)=0  相似文献   

12.
We consider the general initial-boundary value problem

(1)        
(2)        
(3)        
where is a bounded open set in with sufficiently smooth boundary.  The problem (1)-(3) is first reduced to the analogous problem in the space with zero initial condition and


The resulting problem is then reduced to the problem where the operator satisfies Condition  This reduction is based on a priori estimates which are developed herein for linear parabolic operators with coefficients in Sobolev spaces.  The local and global solvability of the operator equation are achieved via topological methods developed by I. V. Skrypnik. Further applications are also given involving relevant coercive problems, as well as Galerkin approximations.

  相似文献   


13.
This paper deals with existence and regularity results for the problem $ \cases{u_t-\mathrm{div}(a(x,t,u )\nabla u)=-\mathrm{div}(u\,E) \qquad in \Omega\times (0,T),\cr u=0 \qquad on \partial \Omega\times (0,T), \cr u (0)= u_0 \qquad in \Omega ,\cr} $ under various assumptions on E and $ u_0 $. The main difculty in studying this problem is due to the presence of the term div(uE), which makes the differential operator non coercive on the "energy space" $ L^2 (0, T; H_0^1 (\Omega)) $.AMS Subject Classification: 35K10, 35K15, 35K65.  相似文献   

14.
We shall provide conditions on the function . The higher order boundary value problem

has at least one solution.

  相似文献   


15.
Let $\Omega \subset \Bbb{R}^2$ denote a bounded domain whose boundary $\partial \Omega$ is Lipschitz and contains a segment $\Gamma_0$ representing the austenite-twinned martensite interface. We prove $$\displaystyle{\inf_{{u\in \cal W}(\Omega)} \int_\Omega \varphi(\nabla u(x,y))dxdy=0}$$ for any elastic energy density $\varphi : \Bbb{R}^2 \rightarrow [0,\infty)$ such that $\varphi(0,\pm 1)=0$. Here ${\cal W}(\Omega)$ consists of all Lipschitz functions $u$ with $u=0$ on $\Gamma_0$ and $|u_y|=1$ a.e. Apart from the trivial case $\Gamma_0 \subset \reel \times \{a\},~a\in \Bbb{R}$, this result is obtained through the construction of suitable minimizing sequences which differ substantially for vertical and non-vertical segments.  相似文献   

16.
In this paper, the authors obtain the existence of infinitely many classical solutions to the boundary value system with Sturm–Liouville boundary conditions $$\left\{\begin{array}{ll}-(\phi_{p_i}(u_{i}^\prime))^\prime = \lambda F_{u_{i}}(x,u_{1},\ldots,u_{n})h_{i}(u^\prime_i)\quad {\rm in} \, (a,b), \\ \alpha_iu_{i}(a)-\beta_iu^ \prime_{i}(a)=0, \quad \gamma_iu_{i}(b)+\sigma_iu^\prime_{i}(b)=0, \end{array}\quad{i = 1, \ldots , n.} \right.$$ Critical point theory and Ricceri’s variational principle are used in the proofs.  相似文献   

17.
We discuss the asymptotic behaviour of the Schrödinger equation ¶¶$ iu_{t} + u_{xx} +i\alpha u -k\sigma(|u|^{2})u\, = f, \;\; x \in \mathbb{R}, \;\; t \geq 0,\;\;\;\alpha,\;k>0 $ iu_{t} + u_{xx} +i\alpha u -k\sigma(|u|^{2})u\, = f, \;\; x \in \mathbb{R}, \;\; t \geq 0,\;\;\;\alpha,\;k>0 ¶¶ with the initial condition u(x,0) = u0 (x) u(x,0) = u_0 (x) . We prove existence of a global attractor in\ H2 (\mathbbR) H^2 (\mathbb{R}) , by using a decomposition of the semigroup in weighted Sobolev spaces to overcome the noncompactness of the classical Sobolev embeddings.  相似文献   

18.
考虑了R~n上n(n≥2)维向列型液晶流(u,d)当初值属于Q_α~(-1)(R~n,R~n)×Q_α(R~n,S~2)(其中α∈(0,1))时Cauchy问题的适定性,这里的Q_α(R~n)最早由Essen,Janson,Peng和Xiao(见[Essen M,Janson S,Peng L,Xiao J.Q space of several real variables,Indiana Univ Math J,2000,49:575-615])引入,是指由R~n中满足的所有可测函数f全体所组成的空间.上式左端在取遍Rn中所有以l(I)为边长且边平行于坐标轴的立方体I的全体中取上确界,而Q_α~(-1)(R~n):=▽·Q_α(R~n).最后证明了解(u,d)在类C([0,T);Q_(α,T)~(-1)(R~n,R~n))∩L_(loc)~∞((0,T);L~∞(R~n,R~n))×C([0,T);Q_α,T(R~n,S~2))∩L_(loc)~∞((0,T);W~(1,∞)(R~n,S~2))(其中0T≤∞)中是唯一的.  相似文献   

19.
On the real line, the Dunkl operators$$D_{\nu}(f)(x):=\frac{d f(x)}{dx} + (2\nu+1) \frac{f(x) - f(-x)}{2x}, ~~ \quad\forall \, x \in \mathbb{R}, ~ \forall \, \nu \ge -\tfrac{1}{2}$$are differential-difference operators associated with the reflection group $\mathbb{Z}_2$ on $\mathbb{R}$, and on the $\mathbb{R}^d$ the Dunkl operators $\big\{D_{k,j}\big\}_{j=1}^{d}$ are the differential-difference operators associated with the reflection group $\mathbb{Z}_2^d$ on $\mathbb{R}^{d}$.In this paper, in the setting $\mathbb{R}$ we show that $b \in BMO(\mathbb{R},dm_{\nu})$ if and only if the maximal commutator $M_{b,\nu}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R},dm_{\nu})$. Also in the setting $\mathbb{R}^{d}$ we show that $b \in BMO(\mathbb{R}^{d},h_{k}^{2}(x) dx)$ if and only if the maximal commutator $M_{b,k}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R}^{d},h_{k}^{2}(x) dx)$.  相似文献   

20.
This paper deals with the following mixed problem for Quasilinear hyperbolic equationsThe M order uniformly valid asymptotic solutions are obtained and there errors areestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号