首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a weak viscoelastic equation with internal time-varying delay
$$\begin{aligned} u_{tt}(x, t)-\triangle u(x, t)+\alpha(t) \int_{0}^{t}g(t-s)\triangle u(x, s)ds+\mu u_{t}\bigl(x, t-\tau(t)\bigr)=0 \end{aligned}$$
in a bounded domain. By introducing suitable energy and Lyapunov functionals, under suitable assumptions, we establish a general decay result for the energy. This work generalizes and improves earlier results in the literature.
  相似文献   

2.
In this paper, a viscoelastic equation with nonlinear boundary damping and source terms of the form $$\begin{array}{llll}u_{tt}(t)-\Delta u(t)+\displaystyle\int\limits_{0}^{t}g(t-s)\Delta u(s){\rm d}s=a\left\vert u\right\vert^{p-1}u,\quad{\rm in}\,\Omega\times(0,\infty), \\ \qquad\qquad\qquad\qquad\qquad u=0,\,{\rm on}\,\Gamma_{0} \times(0,\infty),\\ \dfrac{\partial u}{\partial\nu}-\displaystyle\int\limits_{0}^{t}g(t-s)\frac{\partial}{\partial\nu}u(s){\rm d}s+h(u_{t})=b\left\vert u\right\vert ^{k-1}u,\quad{\rm on} \ \Gamma_{1} \times(0,\infty) \\ \qquad\qquad\qquad\qquad u(0)=u^{0},u_{t}(0)=u^{1},\quad x\in\Omega, \end{array}$$ is considered in a bounded domain ??. Under appropriate assumptions imposed on the source and the damping, we establish both existence of solutions and uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback and the relaxation function g, without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function g. Moreover, for certain initial data in the unstable set, the finite time blow-up phenomenon is exhibited.  相似文献   

3.
The following viscoelastic wave equation with a time-varying delay term in internal feedback $|u_t|^ρu_{tt}-Δu-Δu_{tt}+∫^t_0g(t-s)Δu(s)ds+μ_1u_t(x,t)+μ_2u_t(x,t-τ(t))=0$, is considered in a bounded domain. Under appropriate conditions on μ_1, μ_2 and on the kernel g, we establish the general decay result for the energy by suitable Lyapunov functionals.  相似文献   

4.
This paper is concerned with the Hölder estimates of weak solutions of the Cauchy problem for the general degenerate parabolic equations


with the initial data , where the diffusion function can be a constant on a nonzero measure set, such as the equations of two-phase Stefan type. Some explicit Hölder exponents of the composition function with respect to the space variables are obtained by using the maximum principle.

  相似文献   


5.
Results on finite-time blow-up of solutions to the nonlocal parabolic problem

are established. They extend some known results to higher dimensions.

  相似文献   


6.
In this paper, we study the well-posedness of an initial-boundary-value problem (IBVP) for the Boussinesq equation on a bounded domain,\begin{cases} &u_{tt}-u_{xx}+(u^2)_{xx}+u_{xxxx}=0,\quad x\in (0,1), \;\;t>0,\\ &u(x,0)=\varphi(x),\;\;\; u_t(x,0)=ψ(x),\\ &u(0,t)=h_1(t),\;\;\;u(1,t)=h_2(t),\;\;\;u_{xx}(0,t)=h_3(t),\;\;\;u_{xx}(1,t)=h_4(t).\\ \end{cases} It is shown that the IBVP is locally well-posed in the space $H^s (0,1)$ for any $s\geq 0$ with the initial data $\varphi,$ $\psi$ lie in $H^s(0,1)$ and $ H^{s-2}(0,1)$, respectively, and the naturally compatible boundary data $h_1,$ $h_2$ in the space $H_{loc}^{(s+1)/2}(\mathbb{R}^+)$, and $h_3 $, $h_4$ in the the space of $H_{loc}^{(s-1)/2}(\mathbb{R}^+)$ with optimal regularity.  相似文献   

7.
In this paper, we consider the following nonlinear Kirchhoff wave equation
$\left\{\begin{array}{l}u_{tt}-\frac{\partial }{\partial x}(\mu (u,\Vert u_{x}\Vert ^{2})u_{x})=f(x,t,u,u_{x},u_{t}),\quad 0
(1)
where \(\widetilde{u}_{0}\), \(\widetilde{u}_{1}\), μ, f, g are given functions and \(\Vert u_{x}\Vert ^{2}=\int_{0}^{1}u_{x}^{2}(x,t)dx.\) To the problem (1), we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved by applying the Faedo–Galerkin method and the weak compact method. In particular, motivated by the asymptotic expansion of a weak solution in only one, two or three small parameters in the researches before now, an asymptotic expansion of a weak solution in many small parameters appeared on both sides of (1)1 is studied.
  相似文献   

8.
Regularity of viscosity solutions of a degenerate parabolic equation   总被引:3,自引:0,他引:3  
We study the Cauchy problem for the nonlinear degenerate parabolic equation of second order


and present regularity results for the viscosity solutions.

  相似文献   


9.
This paper deals with a two-competing-species chemotaxis system with two different chemicals
$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad}l} \displaystyle u_{t}=\Delta u-\chi_{1}\nabla \cdot (u\nabla v)+\mu_{1} u(1-u-a _{1}w), & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle \tau v_{t}=\Delta v-v+w, & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle w_{t}=\Delta w-\chi_{2}\nabla \cdot (w\nabla z)+\mu_{2}w(1-a_{2}u-w), & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle \tau z_{t}=\Delta z-z+u, & (x,t)\in \varOmega \times (0,\infty ), \end{array}\displaystyle \right . \end{aligned}$$
under homogeneous Neumann boundary conditions in a smooth bounded domain \(\varOmega \subset \mathbb{R}^{n}\) \((n\geq 1)\) with the nonnegative initial data \((u_{0},\tau v_{0},w_{0},\tau z_{0})\in C^{0}(\overline{\varOmega }) \times W^{1,\infty }(\varOmega )\times C^{0}(\overline{\varOmega })\times W ^{1,\infty }(\varOmega )\), where \(\tau \in \{0,1\}\) and the parameters \(\chi_{i},\mu_{i},a_{i}\) (\(i=1,2\)) are positive. When \(\tau =0\), based on some a priori estimates and Moser-Alikakos iteration, it is shown that regardless of the size of initial data, the system possesses a unique globally bounded classical solution for any positive parameters if \(n=2\). On the other hand, when \(\tau =1\), relying on the maximal Sobolev regularity and semigroup technique, it is proved that the system admits a unique globally bounded classical solution provided that \(n\geq 1\) and there exists \(\theta_{0}>0\) such that \(\frac{\chi_{2}}{ \mu_{1}}<\theta_{0}\) and \(\frac{\chi_{1}}{\mu_{2}}<\theta_{0}\).
  相似文献   

10.
FINITEDIFFERENCESCHEMESOFTHENONLINEARPSEUDO-PARABOLICSYSTEMDUMINGSHENG(杜明笙)(InstituteofAppliedPhysicsandComputationalMathemat...  相似文献   

11.
We are concerned with existence, positivity property and long-time behavior of solutions to the following initial boundary value problem of a fourth order degenerate parabolic equation in higher space dimensions   相似文献   

12.
In this paper, we consider initial-boundary value problem of viscoelastic wave equation with a delay term in the interior feedback. Namely, we study the following equation $$u_{tt}(x, t) - \Delta {u}(x, t) + \int_{0}^{t} g(t - s)\,\Delta {u}(x, s){\rm d}s + \mu_{1} u_{t}(x, t) + \mu_{2} u_{t}(x, t -\tau) = 0$$ together with initial-boundary conditions of Dirichlet type in Ω × (0, + ∞) and prove that for arbitrary real numbers  μ 1 and μ 2, the above-mentioned problem has a unique global solution under suitable assumptions on the kernel g. This improve the results of the previous literature such as Nicaise and Pignotti (SIAM J. Control Optim 45:1561–1585, 2006) and Kirane and Said-Houari (Z. Angew. Math. Phys. 62:1065–1082, 2011) by removing the restriction imposed on μ 1 and μ 2. Furthermore, we also get an exponential decay results for the energy of the concerned problem in the case μ 1 = 0 which solves an open problem proposed by Kirane and Said-Houari (Z. Angew. Math. Phys. 62:1065–1082, 2011).  相似文献   

13.
The authors present conditions under which every positive solution $x(t)$ of the integro--differential equation $x^{\prime \prime }(t)=a(t)+\int_{c}^{t}(t-s)^{\alpha-1}[e(s)+k(t,s)f(s,x(s))]ds, \quad c>1, \ \alpha >0,$ satisfies $x(t)=O(tA(t))\textrm{ as }t\rightarrow \infty,$ i.e, $\limsup_{t\rightarrow \infty }\frac{x(t)}{tA(t)}<\infty, \textrm{where} \ A(t)=\int_{c}^{t}a(s)ds.$ From the results obtained, they derive a technique that can be applied to some related integro--differential equations that are equivalent to certain fractional differential equations of Caputo type of any order.  相似文献   

14.
A semilinear parabolic system in a bounded domain   总被引:1,自引:0,他引:1  
Consider the system
0, x \in \Omega \} , \hfill \\ v_t - \Delta v = u^q , in Q , \hfill \\ u(0, x) = u_0 (x) v(0, x) = v_0 (x) in \Omega , \hfill \\ u(t, x) = v(t, x) = 0 , when t \geqslant 0, x \in \partial \Omega , \hfill \\ \end{gathered} \right.$$ " align="middle" vspace="20%" border="0">  相似文献   

15.
We deal with the following parabolic problem, $$(P)\left\{\begin{array}{lll} u_t - \Delta{u} + |\nabla{u}|^q \quad=\quad \lambda{g}(x)u + f(x, t),\quad u > 0 \; {\rm in} \; \Omega \; \times \; (0, T),\\ \qquad\quad\quad\; u(x, t) \quad=\quad 0 \quad{\rm on}\; {\partial}{\Omega}\; \times ; (0, T),\\ \qquad\quad\quad\; u(x, 0) \quad=\quad u_{0}(x), \quad x \in {\Omega},\end{array}\right.$$ where is a bounded regular domain or ${\Omega = \mathbb{R}^N}$ , ${1 < q \leq 2, \lambda > 0\; {\rm and}\; f \geq 0, u_{0} \geq 0}$ are in a suitable class of functions. We give assumptions on g with respect to q for which for all λ >  0 and all ${f \in L^1(\Omega_T ), f \geq 0}$ , problem (P) has a positive solution. Under some additional conditions on the data, the Cauchy problem and the asymptotic behavior of the solution are also considered.  相似文献   

16.
This paper studies the initial-boundary value problem of GBBM equations u_t - Δu_t = div f(u) \qquad\qquad\qquad(a) u(x, 0) = u_0(x)\qquad\qquad\qquad(b) u |∂Ω = 0 \qquad\qquad\qquad(c) in arbitrary dimensions, Ω ⊂ R^n. Suppose that. f(s) ∈ C¹ and |f'(s)| ≤ C (1+|s|^ϒ), 0 ≤ ϒ ≤ \frac{2}{n-2} if n ≥ 3, 0 ≤ ϒ < ∞ if n = 2, u_0 (x) ∈ W^{2⋅p}(Ω) ∩ W^{1⋅p}_0(Ω) (2 ≤ p < ∞), then ∀T > 0 there exists a unique global W^{2⋅p} solution u ∈ W^{1,∞}(0, T; W{2⋅p}(Ω)∩ W^{1⋅p}_0(Ω)), so the known results are generalized and improved essentially.  相似文献   

17.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

18.
We study the global existence and asymptotic behavior of solutions to the initial-boundary value problem for the nonlinear nonlocal Ott–Sudan–Ostrovskiy type equations on a segment
where and the constant C 1 < 0. The aim of this paper is to prove the global existence of solutions to the inital-boundary value problem and to find the main term of the asymptotic representation in the case of the large initial data.   相似文献   

19.
We study nonnegative solutions of the initial value problem for a weakly coupled system
  相似文献   

20.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号