首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, some local and parallel discretizations and adaptive finite element algorithms are proposed and analyzed for nonlinear elliptic boundary value problems in both two and three dimensions. The main technique is to use a standard finite element discretization on a coarse grid to approximate low frequencies and then to apply some linearized discretization on a fine grid to correct the resulted residual (which contains mostly high frequencies) by some local/parallel procedures. The theoretical tools for analyzing these methods are some local a priori and a posteriori error estimates for finite element solutions on general shape-regular grids that are also obtained in this paper.  相似文献   

2.
LOCAL AND PARALLEL FINITE ELEMENT ALGORITHMS FOR THE NAVIER-STOKES PROBLEM   总被引:2,自引:0,他引:2  
Based on two-grid discretizations, in this paper, some new local and parallel finiteelement algorithms are proposed and analyzed for the stationary incompressible Navier-Stokes problem. These algorithms are motivated by the observation that for a solutionto the Navier-Stokes problem, low frequency components can be approximated well by arelatively coarse grid and high frequency components can be computed on a fine grid bysome local and parallel procedure. One major technical tool for the analysis is some locala priori error estimates that are also obtained in this paper for the finite element solutionson general shape-regular grids.  相似文献   

3.
Based on two-grid discretizations, some local and parallel finite element algorithms for the Stokes problem are proposed and analyzed in this paper. These algorithms are motivated by the observation that for a solution to the Stokes problem, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedure. One technical tool for the analysis is some local a priori estimates that are also obtained in this paper for the finite element solutions on general shape-regular grids. Y. He was partially subsidized by the NSF of China 10671154 and the National Basic Research Program under the grant 2005CB321703; A. Zhou was partially supported by the National Science Foundation of China under the grant 10425105 and the National Basic Research Program under the grant 2005CB321704; J. Li was partially supported by the NSF of China under the grant 10701001. J. Xu was partially supported by Alexander von Humboldt Research Award for Senior US Scientists, NSF DMS-0609727 and NSFC-10528102.  相似文献   

4.
Local and Parallel Finite Element Algorithms for Eigenvalue Problems   总被引:4,自引:0,他引:4  
Abstract Some new local and parallel finite element algorithms are proposed and analyzed in this paper foreigenvalue problems.With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced tothe solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraicsystems on fine grid by using some local and parallel procedure.A theoretical tool for analyzing these algorithmsis some local error estimate that is also obtained in this paper for finite element approximations of eigenvectorson general shape-regular grids.  相似文献   

5.
Summary We describe sequential and parallel algorithms based on the Schwarz alternating method for the solution of mixed finite element discretizations of elliptic problems using the Raviart-Thomas finite element spaces. These lead to symmetric indefinite linear systems and the algorithms have some similarities with the traditional block Gauss-Seidel or block Jacobi methods with overlapping blocks. The indefiniteness requires special treatment. The sub-blocks used in the algorithm correspond to problems on a coarse grid and some overlapping subdomains and is based on a similar partition used in an algorithm of Dryja and Widlund for standard elliptic problems. If there is sufficient overlap between the subdomains, the algorithm converges with a rate independent of the mesh size, the number of subdomains and discontinuities of the coefficients. Extensions of the above algorithms to the case of local grid refinement is also described. Convergence theory for these algorithms will be presented in a subsequent paper.This work was supported in part by the National Science Foundation under Grant NSF-CCR-8903003, while the author was a graduate student at New York University, and in part by the Army Research Office under Grant DAAL 03-91-G-0150, while the author was a Visiting Assistant Researcher at UCLA  相似文献   

6.
Based on two-grid discretizations, some local and parallel finite element algorithms for the d-dimensional (d = 2,3) transient Stokes equations are proposed and analyzed. Both semi- and fully discrete schemes are considered. With backward Euler scheme for the temporal discretization, the basic idea of the fully discrete finite element algorithms is to approximate the generalized Stokes equations using a coarse grid on the entire domain, then correct the resulted residue using a finer grid on overlapped subdomains by some local and parallel procedures at each time step. By the technical tool of local a priori estimate for the fully discrete finite element solution, errors of the corresponding solutions from these algorithms are estimated. Some numerical results are also given which show that the algorithms are highly efficient.  相似文献   

7.
This article presents a local and parallel finite element method for the stationary incompressible magnetohydrodynamics problem. The key idea of this algorithm comes from the two‐grid discretization technique. Specifically, we solve the nonlinear system on a global coarse mesh, and then solve a series of linear problems on several subdomains in parallel. Furthermore, local a priori estimates are obtained on a general shape regular grid. The efficiency of the algorithm is also illustrated by some numerical experiments.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1513–1539, 2017  相似文献   

8.
Two-grid finite volume element discretization techniques, based on two linear conforming finite element spaces on one coarse and one fine grid, are presented for the two-dimensional second-order non-selfadjoint and indefinite linear elliptic problems and the two-dimensional second-order nonlinear elliptic problems. With the proposed techniques, solving the non-selfadjoint and indefinite elliptic problem on the fine space is reduced into solving a symmetric and positive definite elliptic problem on the fine space and solving the non-selfadjoint and indefinite elliptic problem on a much smaller space; solving a nonlinear elliptic problem on the fine space is reduced into solving a linear problem on the fine space and solving the nonlinear elliptic problem on a much smaller space. Convergence estimates are derived to justify the efficiency of the proposed two-grid algorithms. A set of numerical examples are presented to confirm the estimates. The work is supported by the National Natural Science Foundation of China (Grant No: 10601045).  相似文献   

9.
Multiscale finite element for problems with highly oscillatory coefficients   总被引:1,自引:0,他引:1  
Summary. In this paper, we study a multiscale finite element method for solving a class of elliptic problems with finite number of well separated scales. The method is designed to efficiently capture the large scale behavior of the solution without resolving all small scale features. This is accomplished by constructing the multiscale finite element base functions that are adaptive to the local property of the differential operator. The construction of the base functions is fully decoupled from element to element; thus the method is perfectly parallel and is naturally adapted to massively parallel computers. We present the convergence analysis of the method along with the results of our numerical experiments. Some generalizations of the multiscale finite element method are also discussed. Received April 17, 1998 / Revised version received March 25, 2000 / Published online June 7, 2001  相似文献   

10.
Some three-scale finite element discretization schemes are proposed and analyzed in this paper for a class of elliptic eigenvalue problems on tensor product domains. With these schemes, the solution of an eigenvalue problem on a fine grid may be reduced to the solutions of eigenvalue problems on a relatively coarse grid and some partially mesoscopic grids, together with the solutions of linear algebraic systems on a globally mesoscopic grid and several partially fine grids. It is shown theoretically and numerically that this type of discretization schemes not only significantly reduce the number of degrees of freedom but also produce very accurate approximations. AMS subject classification (2000)  65N15, 65N25, 65N30, 65N50  相似文献   

11.
In this paper, a local multilevel algorithm is investigated for solving linear systems arising from adaptive finite element approximations of second order elliptic problems with smooth complex coefficients. It is shown that the abstract theory for local multilevel algorithm can also be applied to elliptic problems whose dominant coefficient is complex valued. Assuming that the coarsest mesh size is sufficiently small, we prove that this algorithm with Gauss-Seidel smoother is convergent and optimal on the adaptively refined meshes generated by the newest vertex bisection algorithm. Numerical experiments are reported to confirm the theoretical analysis.  相似文献   

12.
To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R~d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.  相似文献   

13.
不可压缩流动的数值模拟是计算流体力学的重要组成部分. 基于有限元离散方法, 本文设计了不可压缩Navier-Stokes (N-S)方程支配流的若干并行数值算法. 这些并行算法可归为两大类: 一类是基于两重网格离散方法, 首先在粗网格上求解非线性的N-S方程, 然后在细网格的子区域上并行求解线性化的残差方程, 以校正粗网格的解; 另一类是基于新型完全重叠型区域分解技巧, 每台处理器用一局部加密的全局多尺度网格计算所负责子区域的局部有限元解. 这些并行算法实现简单, 通信需求少, 具有良好的并行性能, 能获得与标准有限元方法相同收敛阶的有限元解. 理论分析和数值试验验证了并行算法的高效性  相似文献   

14.
Summary. In this paper we introduce a class of robust multilevel interface solvers for two-dimensional finite element discrete elliptic problems with highly varying coefficients corresponding to geometric decompositions by a tensor product of strongly non-uniform meshes. The global iterations convergence rate is shown to be of the order with respect to the number of degrees of freedom on the single subdomain boundaries, uniformly upon the coarse and fine mesh sizes, jumps in the coefficients and aspect ratios of substructures. As the first approach, we adapt the frequency filtering techniques [28] to construct robust smoothers on the highly non-uniform coarse grid. As an alternative, a multilevel averaging procedure for successive coarse grid correction is proposed and analyzed. The resultant multilevel coarse grid preconditioner is shown to have (in a two level case) the condition number independent of the coarse mesh grading and jumps in the coefficients related to the coarsest refinement level. The proposed technique exhibited high serial and parallel performance in the skin diffusion processes modelling [20] where the high dimensional coarse mesh problem inherits a strong geometrical and coefficients anisotropy. The approach may be also applied to magnetostatics problems as well as in some composite materials simulation. Received December 27, 1994  相似文献   

15.
We propose a multiscale finite element method for solving second order elliptic equations with rapidly oscillating coefficients. The main purpose is to design a numerical method which is capable of correctly capturing the large scale components of the solution on a coarse grid without accurately resolving all the small scale features in the solution. This is accomplished by incorporating the local microstructures of the differential operator into the finite element base functions. As a consequence, the base functions are adapted to the local properties of the differential operator. In this paper, we provide a detailed convergence analysis of our method under the assumption that the oscillating coefficient is of two scales and is periodic in the fast scale. While such a simplifying assumption is not required by our method, it allows us to use homogenization theory to obtain a useful asymptotic solution structure. The issue of boundary conditions for the base functions will be discussed. Our numerical experiments demonstrate convincingly that our multiscale method indeed converges to the correct solution, independently of the small scale in the homogenization limit. Application of our method to problems with continuous scales is also considered.

  相似文献   


16.
On Mixed Error Estimates for Elliptic Obstacle Problems   总被引:1,自引:0,他引:1  
We establish in this paper sharp error estimates of residual type for finite element approximation to elliptic obstacle problems. The estimates are of mixed nature, which are neither of a pure a priori form nor of a pure a posteriori form but instead they are combined by an a priori part and an a posteriori part. The key ingredient in our derivation for the mixed error estimates is the use of a new interpolator which enables us to eliminate inactive data from the error estimators. One application of our mixed error estimates is to construct a posteriori error indicators reliable and efficient up to higher order terms, and these indicators are useful in mesh-refinements and adaptive grid generations. In particular, by approximating the a priori part with some a posteriori quantities we can successfully track the free boundary for elliptic obstacle problems.  相似文献   

17.
This paper proposes a stabilization of the classical hierarchical basis (HB) method by modifying the HB functions using some computationally feasible approximate L2-projections onto finite element spaces of relatively coarse levels. The corresponding multilevel additive and multiplicative algorithms give spectrally equivalent preconditioners, and one action of such a preconditioner is of optimal order computationally. The results are regularity-free for the continuous problem (second order elliptic) and can be applied to problems with rough coefficients and local refinement. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
The main goal of this paper is to present recovery type a posteriori error estimators and superconvergence for the nonconforming finite element eigenvalue approximation of self-adjoint elliptic equations by projection methods. Based on the superconvergence results of nonconforming finite element for the eigenfunction we derive superconvergence and recovery type a posteriori error estimates of the eigenvalue. The results are based on some regularity assumption for the elliptic problem and are applicable to the lowest order nonconforming finite element approximations of self-adjoint elliptic eigenvalue problems with quasi-regular partitions. Therefore, the results of this paper can be employed to provide useful a posteriori error estimators in practical computing under unstructured meshes.  相似文献   

19.
Several domain decomposition methods of Neumann-Neumann type are considered for solving the large linear systems of algebraic equations that arise from discretizations of elliptic problems by finite elements. We will only consider problems in three dimensions. Several new variants of the basic algorithm are introduced in a Schwarz method framework that provides tools which have already proven very useful in the design and analysis of other domain decomposition and multi-level methods. The Neumann-Neumann algorithms have several advantages over other domain decomposition methods. The subregions, which define the subproblems, only share the boundary degrees of freedom with their neighbors. The subregions can also be of quite arbitrary shape and many of the major components of the preconditioner can be constructed from subprograms available in standard finite element program libraries. In its original form, however, the algorithm lacks a mechanism for global transportation of information and its performance therefore suffers when the number of subregions increases. In the new variants of the algorithms, considered in this paper, the preconditioners include global components, of low rank, to overcome this difficulty. Bounds are established for the condition number of the iteration operator, which are independent of the number of subregions, and depend only polylogarithmically on the number of degrees of freedom of individual local subproblems. Results are also given for problems with arbitrarily large jumps in the coefficients across the interfaces separating the subregions. ©1995 John Wiley & Sons, Inc.  相似文献   

20.
本文提出了求解二阶椭圆问题的一类广义有限元方法,分析了广义有限元方法的优越性,证明了二阶椭圆问题的广义有限元方法具有比标准的Galerkin有限元方法更高阶的收敛速度,根据插值算子的性质,进一步证明了有限元解的亏量迭代校正收敛到广义有限元解,并用数值例子说明广义有限元方法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号