首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one. The most popular regularization methods for problems of small to moderate size, which allow evaluation of the singular value decomposition of the matrix defining the problem, are the truncated singular value decomposition and Tikhonov regularization. The present paper proposes a novel choice of regularization matrix for Tikhonov regularization that bridges the gap between Tikhonov regularization and truncated singular value decomposition. Computed examples illustrate the benefit of the proposed method.  相似文献   

2.
In this paper we introduce a new variant of L-curve to estimate the Tikhonov regularization parameter for the regularization of discrete ill-posed problems. This method uses the solution norm versus the regularization parameter. The numerical efficiency of this new method is also discussed by considering some test problems.  相似文献   

3.
Tikhonov正则化方法是研究不适定问题最重要的正则化方法之一,但由于这种方法的饱和效应出现的太早,使得无法随着对解的光滑性假设的提高而提高正则逼近解的收敛率,也即对高的光滑性假设,正则解与准确解的误差估计不可能达到阶数最优.Schrroter T 和Tautenhahn U给出了一类广义Tikhonov正则化方法并重点讨论了它的最优误差估计, 但却未能对该方法的饱和效应进行研究.本文对此进行了仔细分析,并发现此方法可以防止饱和效应,而且数值试验结果表明此方法计算效果良好.  相似文献   

4.
Summary. In the study of the choice of the regularization parameter for Tikhonov regularization of nonlinear ill-posed problems, Scherzer, Engl and Kunisch proposed an a posteriori strategy in 1993. To prove the optimality of the strategy, they imposed many very restrictive conditions on the problem under consideration. Their results are difficult to apply to concrete problems since one can not make sure whether their assumptions are valid. In this paper we give a further study on this strategy, and show that Tikhonov regularization is order optimal for each with the regularization parameter chosen according to this strategy under some simple and easy-checking assumptions. This paper weakens the conditions needed in the existing results, and provides a theoretical guidance to numerical experiments. Received August 8, 1997 / Revised version received January 26, 1998  相似文献   

5.
The numerical simulation of the mechanical behavior of industrial materials is widely used for viability verification, improvement and optimization of designs. Elastoplastic models have been used to forecast the mechanical behavior of different materials. The numerical solution of most elastoplastic models comes across problems of ill-condition matrices. A complete representation of the nonlinear behavior of such structures involves the nonlinear equilibrium path of the body and handling of singular (limit) points and/or bifurcation points. Several techniques to solve numerical problems associated to these points have been disposed in the specialized literature. Two examples are the load-controlled Newton–Raphson method and displacement controlled techniques. However, most of these methods fail due to convergence problems (ill-conditioning) in the neighborhood of limit points, specially when the structure presents snap-through or snap-back equilibrium paths. This study presents the main ideas and formalities of the Tikhonov regularization method and shows how this method can be used in the analysis of dynamic elastoplasticity problems. The study presents a rigorous mathematical demonstration of existence and uniqueness of the solution of well-posed dynamic elastoplasticity problems. The numerical solution of dynamic elastoplasticity problems using Tikhonov regularization is presented in this paper. The Galerkin method is used in this formulation. Effectiveness of Tikhonov’s approach in the regularization of the solution of elastoplasticity problems is demonstrated by means of some simple numerical examples.  相似文献   

6.
Tikhonov regularization is a popular method for the solution of linear discrete ill-posed problems with error-contaminated data. Nonstationary iterated Tikhonov regularization is known to be able to determine approximate solutions of higher quality than standard Tikhonov regularization. We investigate the choice of solution subspace in iterative methods for nonstationary iterated Tikhonov regularization of large-scale problems. Generalized Krylov subspaces are compared with Krylov subspaces that are generated by Golub–Kahan bidiagonalization and the Arnoldi process. Numerical examples illustrate the effectiveness of the methods.  相似文献   

7.
The Tikhonov method is a famous technique for regularizing ill-posed linear problems, wherein a regularization parameter needs to be determined. This article, based on an invariant-manifold method, presents an adaptive Tikhonov method to solve ill-posed linear algebraic problems. The new method consists in building a numerical minimizing vector sequence that remains on an invariant manifold, and then the Tikhonov parameter can be optimally computed at each iteration by minimizing a proper merit function. In the optimal vector method (OVM) three concepts of optimal vector, slow manifold and Hopf bifurcation are introduced. Numerical illustrations on well known ill-posed linear problems point out the computational efficiency and accuracy of the present OVM as compared with classical ones.  相似文献   

8.
Tikhonov regularization is one of the most popular approaches to solving linear discrete ill‐posed problems. The choice of the regularization matrix may significantly affect the quality of the computed solution. When the regularization matrix is the identity, iterated Tikhonov regularization can yield computed approximate solutions of higher quality than (standard) Tikhonov regularization. This paper provides an analysis of iterated Tikhonov regularization with a regularization matrix different from the identity. Computed examples illustrate the performance of this method.  相似文献   

9.
We consider Tikhonov regularization of control-constrained optimal control problems. We present new a-priori estimates for the regularization error assuming measure and source-measure conditions. In the special case of bang–bang solutions, we introduce another assumption to obtain the same convergence rates. This new condition turns out to be useful in the derivation of error estimates for the discretized problem. The necessity of the just mentioned assumptions to obtain certain convergence rates is analyzed. Finally, a numerical example confirms the analytical findings.  相似文献   

10.
A common way to handle the Tikhonov regularization method for the first kind Fredholm integral equations, is first to discretize and then to work with the final linear system. This unavoidably inflicts discretization errors which may lead to disastrous results, especially when a quadrature rule is used. We propose to regularize directly the integral equation resulting in a continuous Tikhonov problem. The Tikhonov problem is reduced to a simple least squares problem by applying the Golub-Kahan bidiagonalization (GKB) directly to the integral operator. The regularization parameter and the iteration index are determined by the discrepancy principle approach. Moreover, we study the discrete version of the proposed method resulted from numerical evaluating the needed integrals. Focusing on the nodal values of the solution results in a weighted version of GKB-Tikhonov method for linear systems arisen from the Nyström discretization. Finally, we use numerical experiments on a few test problems to illustrate the performance of our algorithms.  相似文献   

11.
反问题是现在数学物理研究中的一个热点问题,而反问题求解面临的一个本质性困难是不适定性。求解不适定问题的普遍方法是:用与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法.如何建立有效的正则化方法是反问题领域中不适定问题研究的重要内容.当前,最为流行的正则化方法有基于变分原理的Tikhonov正则化及其改进方法,此类方法是求解不适定问题的较为有效的方法,在各类反问题的研究中被广泛采用,并得到深入研究.  相似文献   

12.
This paper is devoted to solve a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain by the Tikhonov regularization method. Based on the eigenfunction expansion of the solution, the backward problem for searching the initial data is changed to solve a Fredholm integral equation of the first kind. The conditional stability for the backward problem is obtained. We use the Tikhonov regularization method to deal with the integral equation and obtain the series expression of solution. Furthermore, the convergence rates for the Tikhonov regularized solution can be proved by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Two numerical examples in one-dimensional and two-dimensional cases respectively are investigated. Numerical results show that the proposed method is effective and stable.  相似文献   

13.
In this paper, we consider large-scale linear discrete ill-posed problems where the right-hand side contains noise. Regularization techniques such as Tikhonov regularization are needed to control the effect of the noise on the solution. In many applications such as in image restoration the coefficient matrix is given as a Kronecker product of two matrices and then Tikhonov regularization problem leads to the generalized Sylvester matrix equation. For large-scale problems, we use the global-GMRES method which is an orthogonal projection method onto a matrix Krylov subspace. We present some theoretical results and give numerical tests in image restoration.  相似文献   

14.
In this paper, we discuss the classical ill-posed problem of numerical differentiation, assuming that the smoothness of the function to be differentiated is unknown. Using recent results on adaptive regularization of general ill-posed problems, we propose new rules for the choice of the stepsize in the finite-difference methods, and for the regularization parameter choice in numerical differentiation regularized by the iterated Tikhonov method. These methods are shown to be effective for the differentiation of noisy functions, and the order-optimal convergence results for them are proved.

  相似文献   


15.
In this paper, we investigate a Cauchy problem associated with Helmholtz-type equation in an infinite “strip”. This problem is well known to be severely ill-posed. The optimal error bound for the problem with only nonhomogeneous Neumann data is deduced, which is independent of the selected regularization methods. A framework of a modified Tikhonov regularization in conjunction with the Morozov’s discrepancy principle is proposed, it may be useful to the other linear ill-posed problems and helpful for the other regularization methods. Some sharp error estimates between the exact solutions and their regularization approximation are given. Numerical tests are also provided to show that the modified Tikhonov method works well.  相似文献   

16.
In this paper we propose a direct regularization method using QR factorization for solving linear discrete ill-posed problems. The decomposition of the coefficient matrix requires less computational cost than the singular value decomposition which is usually used for Tikhonov regularization. This method requires a parameter which is similar to the regularization parameter of Tikhonov's method. In order to estimate the optimal parameter, we apply three well-known parameter choice methods for Tikhonov regularization.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

17.
In this paper we analyse the non‐stationary iterative Tikhonov–Morozov method analytically and numerically for the stable evaluation of differential operators and for denoizing images. A relationship between non‐stationary iterative Tikhonov–Morozov regularization and a filtering technique based on a differential equation of third order is established and both methods are shown to be effective for denoizing images and for the stable evaluation of differential operators. The theoretical results are verified numerically on model problems in ultrasound imaging and numerical differentiation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The computation of an approximate solution of linear discrete ill-posed problems with contaminated data is delicate due to the possibility of severe error propagation. Tikhonov regularization seeks to reduce the sensitivity of the computed solution to errors in the data by replacing the given ill-posed problem by a nearby problem, whose solution is less sensitive to perturbation. This regularization method requires that a suitable value of the regularization parameter be chosen. Recently, Brezinski et al. (Numer Algorithms 49, 2008) described new approaches to estimate the error in approximate solutions of linear systems of equations and applied these estimates to determine a suitable value of the regularization parameter in Tikhonov regularization when the approximate solution is computed with the aid of the singular value decomposition. This paper discusses applications of these and related error estimates to the solution of large-scale ill-posed problems when approximate solutions are computed by Tikhonov regularization based on partial Lanczos bidiagonalization of the matrix. The connection between partial Lanczos bidiagonalization and Gauss quadrature is utilized to determine inexpensive bounds for a family of error estimates. In memory of Gene H. Golub. This work was supported by MIUR under the PRIN grant no. 2006017542-003 and by the University of Cagliari.  相似文献   

19.
20.
基于混沌粒子群算法的Tikhonov正则化参数选取   总被引:2,自引:0,他引:2  
余瑞艳 《数学研究》2011,44(1):101-106
Tikhonov正则化方法是求解不适定问题最为有效的方法之一,而正则化参数的最优选取是其关键.本文将混沌粒子群优化算法与Tikhonov正则化方法相结合,基于Morozov偏差原理设计粒子群的适应度函数,利用混沌粒子群优化算法的优点,为正则化参数的选取提供了一条有效的途径.数值实验结果表明,本文方法能有效地处理不适定问题,是一种实用有效的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号