首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination method of the Newton iteration and two‐level finite element algorithm is applied for solving numerically the steady Navier‐Stokes equations under the strong uniqueness condition. This algorithm is motivated by applying the m Newton iterations for solving the Navier‐Stokes problem on a coarse grid and computing the Stokes problem on a fine grid. Then, the uniform stability and convergence with respect to ν of the two‐level Newton iterative solution are analyzed for the large m and small H and h << H. Finally, some numerical tests are made to demonstrate the effectiveness of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

2.
BDDC algorithms have previously been extended to the saddle point problems arising from mixed formulations of elliptic and incompressible Stokes problems. In these two-level BDDC algorithms, all iterates are required to be in a benign space, a subspace in which the preconditioned operators are positive definite. This requirement can lead to large coarse problems, which have to be generated and factored by a direct solver at the beginning of the computation and they can ultimately become a bottleneck. An additional level is introduced in this paper to solve the coarse problem approximately and to remove this difficulty. This three-level BDDC algorithm keeps all iterates in the benign space and the conjugate gradient methods can therefore be used to accelerate the convergence. This work is an extension of the three-level BDDC methods for standard finite element discretization of elliptic problems and the same rate of convergence is obtained for the mixed formulation of the same problems. Estimate of the condition number for this three-level BDDC methods is provided and numerical experiments are discussed.  相似文献   

3.
Summary. We present a Lagrange multiplier based two-level domain decomposition method for solving iteratively large-scale systems of equations arising from the finite element discretization of high-frequency exterior Helmholtz problems. The proposed method is essentially an extension of the regularized FETI (Finite Element Tearing and Interconnecting) method to indefinite problems. Its two key ingredients are the regularization of each subdomain matrix by a complex interface lumped mass matrix, and the preconditioning of the interface problem by an auxiliary coarse problem constructed to enforce at each iteration the orthogonality of the residual to a set of carefully chosen planar waves. We show numerically that the proposed method is scalable with respect to the mesh size, the subdomain size, and the wavenumber. We report performance results for a submarine application that highlight the efficiency of the proposed method for the solution of high frequency acoustic scattering problems discretized by finite elements. Received March 17, 1998 / Revised version received June 7, 1999 / Published online January 27, 2000  相似文献   

4.
When solving linear algebraic equations with large and sparse coefficient matrices, arising, for instance, from the discretization of partial differential equations, it is quite common to use preconditioning to accelerate the convergence of a basic iterative scheme. Incomplete factorizations and sparse approximate inverses can provide efficient preconditioning methods but their existence and convergence theory is based mostly on M-matrices (H-matrices). In some application areas, however, the arising coefficient matrices are not H-matrices. This is the case, for instance, when higher-order finite element approximations are used, which is typical for structural mechanics problems. We show that modification of a symmetric, positive definite matrix by reduction of positive offdiagonal entries and diagonal compensation of them leads to an M-matrix. This diagonally compensated reduction can take place in the whole matrix or only at the current pivot block in a recursive incomplete factorization method. Applications for constructing preconditioning matrices for finite element matrices are described.  相似文献   

5.
In this article, we develop a branch of nonsingular solutions of a Picard multilevel stabilization of mixed finite volume method for the 2D/3D stationary Navier‐Stokes equations without relying on the unique solution condition. The method presented consists of capturing almost all information of initial problem (the nonlinear problems) on the coarsest mesh and then performs one Picard defect correction (the linear problems) on each subsequent mesh based on previous information thus only solving one large linear systems. What is more, the method presented can results in a better coefficient matrix in the model presented with small viscosity. Theoretical results show that the method presented is derived with the convergence rate of the same order as the corresponding finite volume method/finite element method solving the stationary Navier‐Stokes equations on a fine mesh. Therefore, the method presented is definitely more efficient than the standard finite volume method/finite element method. Finally, numerical experiments clearly show the efficiency of the method presented for solving the stationary Navier‐Stokes equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 30–50, 2018  相似文献   

6.
This article proposes and analyzes a multilevel stabilized finite volume method(FVM) for the three‐dimensional stationary Navier–Stokes equations approximated by the lowest equal‐order finite element pairs. The method combines the new stabilized FVM with the multilevel discretization under the assumption of the uniqueness condition. The multilevel stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performs one Newton correction step on each subsequent mesh thus only solving one large linear systems. The error analysis shows that the multilevel‐stabilized FVM provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the stationary Navier–Stokes equations on a fine mesh for an appropriate choice of mesh widths: hjhj‐12, j = 1,…,J. Therefore, the multilevel stabilized FVM is more efficient than the standard one‐level‐stabilized FVM. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

7.
In this paper, an inverse complementarity power iteration method (ICPIM) for solving eigenvalue complementarity problems (EiCPs) is proposed. Previously, the complementarity power iteration method (CPIM) for solving EiCPs was designed based on the projection onto the convex cone K. In the new algorithm, a strongly monotone linear complementarity problem over the convex cone K is needed to be solved at each iteration. It is shown that, for the symmetric EiCPs, the CPIM can be interpreted as the well‐known conditional gradient method, which requires only linear optimization steps over a well‐suited domain. Moreover, the ICPIM is closely related to the successive quadratic programming (SQP) via renormalization of iterates. The global convergence of these two algorithms is established by defining two nonnegative merit functions with zero global minimum on the solution set of the symmetric EiCP. Finally, some numerical simulations are included to evaluate the efficiency of the proposed algorithms.  相似文献   

8.
We consider the construction of locally conservative fluxes by means of a simple postprocessing technique obtained from the finite element solutions of advection diffusion equations. It is known that a naive calculation of fluxes from these solutions yields nonconservative fluxes. We consider two finite element methods: the usual continuous Galerkin finite element method for solving nondominating advection diffusion equations and the streamline upwind/Petrov‐Galerkin method for solving advection dominated problems. We then describe the postprocessing technique for constructing conservative fluxes from the numerical solutions of the general variational formulation. The postprocessing technique requires solving an auxiliary Neumann boundary value problem on each element independently and it produces a locally conservative flux on a vertex centered dual mesh relative to the finite element mesh. We provide a convergence analysis for the postprocessing technique. Performance of the technique and the convergence behavior are demonstrated through numerical examples including a set of test problems for advection diffusion equations, advection dominated equations, and drift‐diffusion equations. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1971–1994, 2015  相似文献   

9.
Summary. We analyze the convergence of a substructuring iterative method with Lagrange multipliers, proposed recently by Farhat and Roux. The method decomposes finite element discretization of an elliptic boundary value problem into Neumann problems on the subdomains plus a coarse problem for the subdomain nullspace components. For linear conforming elements and preconditioning by the Dirichlet problems on the subdomains, we prove the asymptotic bound on the condition number , or ,where is the characteristic element size and subdomain size. Received January 3, 1995  相似文献   

10.
From the literature it is known that the conjugate gradient method with domain decomposition preconditioners is one of the most efficient methods for solving systems of linear algebraic equations resulting from p‐version finite element discretizations of elliptic boundary value problems. One ingredient of such a preconditioner is a preconditioner related to the Dirichlet problems. In the case of Poisson's equation, we present a preconditioner for the Dirichlet problems which can be interpreted as the stiffness matrix Kh,k resulting from the h‐version finite element discretization of a special degenerated problem. We construct an AMLI preconditioner Ch,k for the matrix Kh,k and show that the condition number of C Kh,k is independent of the discretization parameter. This proof is based on the strengthened Cauchy inequality. The theoretical result is confirmed by numerical examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Some Legendre spectral element/Laguerre spectral coupled methods are proposed to numerically solve second- and fourth-order equations on the half line. The proposed methods are based on splitting the infinite domain into two parts, then using the Legendre spectral element method in the finite subdomain and Laguerre method in the infinite subdomain. C0 or C1-continuity, according to the problem under consideration, is imposed to couple the two methods. Rigorous error analysis is carried out to establish the convergence of the method. More importantly, an efficient computational process is introduced to solve the discrete system. Several numerical examples are provided to confirm the theoretical results and the efficiency of the method.  相似文献   

12.
This paper presents three innovative methods for solving eigenvalue problems for differential equations based upon the techniques of implicit decomposition developed by Luo and Friedman. An eigenvalue problem can be written as an approximate algebraic system of the form [K]{X} + λ[M]{X} = 0 by employing finite elements. These methods provide robust techniques to compute the real eigenpair, λ and {X}, where [K] and [M] can be asymmetric, indefinite, and even singular.  相似文献   

13.
In this paper, the full discrete scheme of mixed finite element approximation is introduced for semilinear hyperbolic equations. To solve the nonlinear problem efficiently, two two‐grid algorithms are developed and analyzed. In this approach, the nonlinear system is solved on a coarse mesh with width H, and the linear system is solved on a fine mesh with width hH. Error estimates and convergence results of two‐grid method are derived in detail. It is shown that if we choose in the first algorithm and in the second algorithm, the two‐grid algorithms can achieve the same accuracy of the mixed finite element solutions. Finally, the numerical examples also show that the two‐grid method is much more efficient than solving the nonlinear mixed finite element system directly.  相似文献   

14.
Here we present and analyze a Neumann–Neumann algorithm for the mortar finite element discretization of elliptic fourth‐order problems with discontinuous coefficients. The fully parallel algorithm is analyzed using the abstract Schwarz framework, proving a convergence which is independent of the parameters of the problem, and depends only logarithmically on the ratio between the subdomain size and the mesh size.© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

15.
A new approach is proposed for constructing nonoverlapping domain decomposition procedures for solving a linear system related to a nodal finite element method. It applies to problems involving either positive semi-definite or complex indefinite local matrices. The main feature of the method is to preserve the continuity requirements on the unknowns and the finite element equations at the nodes shared by more than two subdomains and to suitably augment the local matrices. We prove that the corresponding algorithm can be seen as a converging iterative method for solving the finite element system and that it cannot break down. Each iteration is obtained by solving uncoupled local finite element systems posed in each subdomain and, in contrast to a strict domain decomposition method, is completed by solving a linear system whose unknowns are the degrees of freedom attached to the above special nodes.  相似文献   

16.
In this paper, we consider a two-grid method for resolving the nonlinearity in finite element approximations of the equilibrium Navier–Stokes equations. We prove the convergence rate of the approximation obtained by this method. The two-grid method involves solving one small, nonlinear coarse mesh system and two linear problems on the fine mesh which have the same stiffness matrix with only different right-hand side. The algorithm we study produces an approximate solution with the optimal asymptotic in h and accuracy for any Reynolds number. Numerical example is given to show the convergence of the method.  相似文献   

17.
In this paper, we establish a new local and parallel finite element discrete scheme based on the shifted‐inverse power method for solving the biharmonic eigenvalue problem of plate vibration. We prove the local error estimation of finite element solution for the biharmonic equation/eigenvalue problem and prove the error estimation of approximate solution obtained by the local and parallel scheme. When the diameters of three grids satisfy H4 = ?(w2) = ?(h), the approximate solutions obtained by our schemes can achieve the asymptotically optimal accuracy. The numerical experiments show that the computational schemes proposed in this paper are effective to solve the biharmonic eigenvalue problem of plate vibration.  相似文献   

18.
1.IntroductionNolloverlappillgdomaindecolllpositionnletllodshavereceivedalotofattentionlenlsilllldallowefficielltparallelisnl.F'Orarecentdevelopmelltofthesemethods,werefertot…  相似文献   

19.
Monika Weymuth  Stefan Sauter 《PAMM》2015,15(1):605-606
We develop a generalized finite element method for the discretization of elliptic partial differential equations in heterogeneous media. In [5] a semidiscrete method has been introduced to set up an adaptive local finite element basis (AL basis) on a coarse mesh with mesh size H which, typically, does not resolve the matrix of the media while the textbook finite element convergence rates are preserved. This method requires O(log(1/H)d+1) basis functions per mesh point where d denotes the spatial dimension of the computational domain. We present a fully discrete version of this method, where the AL basis is constructed by solving finite-dimensional localized problems, and which preserves the optimal convergence rates. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this article, a characteristic finite volume element method is presented for solving air pollution models. The convection term is discretized using the characteristic method and diffusion term is approximated by finite volume element method. Compared with standard finite volume element method, our proposed method is more accurate and efficient, especially suitable to solve convection-dominated problems. The proposed numerical schemes are analyzed for convergence in L 2 norm. Some numerical results are presented to demonstrate the efficiency and accuracy of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号