首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
For a second-order elliptic boundary value problem, We develop an intergrid transfer operator in multigrid method for the P1-nonconforming finite element method. This intergrid transfer operator needs smaller computation than previous intergrid transfer operators. Multigrid method with this operator converges well.  相似文献   

2.
1、引言 多重网格方法是求解偏微分方程的高效快速算法,在实际中得到广泛应用.[2][6]中考察了Morley元的多重网格方法,并用于双调和方程问题。  相似文献   

3.
The aim of this paper is to propose a multigrid method to obtain the numerical solution of the one‐dimensional nonlinear sine‐Gordon equation. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a compact finite difference scheme of fourth‐order for discretizing the spatial derivative and the standard second‐order central finite difference method for the time derivative. The proposed method uses the Richardson extrapolation method in time variable. The obtained system has been solved by V‐cycle multigrid (VMG) method, where the VMG method is used for solving the large sparse linear systems. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional sine‐Gordon equation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
We constructed new interpolation operator in multigrid methods, which is efficient to transfer residual error from coarse grid to fine grid. This operator used idea of solving local residual equation using the standard stencil and the skewed stencil of the centered difference approximation to the Laplacian operator. We also compared our new multigrid methods with traditional multigrid methods, and found that new method is optimal.  相似文献   

5.
1.IntroductionWeconsidersomemultigridalgorithmsforthebiharmonicequationdiscretizedbyMoneyelementonnonnestedmeshes.TOdefineamultigridalgorithm,certainintergridtransferoperatorhastobeconstructed.Throughtakingtheaveragesofthenodalvariables,weconstructanintergridtransferoperatorforMoneyelementonnonnestedmeshesthatsatisfiesacertainstableapproximationpropertywhichplaysakeyroleinmultigridmethodsfornonconformingplateelementsonnonnestedmeshes.Theso--calledregularity-approximaticnassurnptionisestablis…  相似文献   

6.
In this article we prove uniform convergence estimates for the recently developed Galerkin‐multigrid methods for nonconforming finite elements for second‐order problems with less than full elliptic regularity. These multigrid methods are defined in terms of the “Galerkin approach,” where quadratic forms over coarse grids are constructed using the quadratic form on the finest grid and iterated coarse‐to‐fine intergrid transfer operators. Previously, uniform estimates were obtained for problems with full elliptic regularity, whereas these estimates are derived with less than full elliptic regularity here. Applications to the nonconforming P1, rotated Q1, and Wilson finite elements are analyzed. The result applies to the mixed method based on finite elements that are equivalent to these nonconforming elements. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 203–217, 2002; DOI 10.1002/num.10004  相似文献   

7.
In this paper, we propose a multigrid algorithm based on the full approximate scheme for solving the membrane constrained obstacle problems and the minimal surface obstacle problems in the formulations of HJB equations. A Newton-Gauss-Seidel (NGS) method is used as smoother. A Galerkin coarse grid operator is proposed for the membrane constrained obstacle problem. Comparing with standard FAS with the direct discretization coarse grid operator, the FAS with the proposed operator converges faster. A special prolongation operator is used to interpolate functions accurately from the coarse grid to the fine grid at the boundary between the active and inactive sets. We will demonstrate the fast convergence of the proposed multigrid method for solving two model obstacle problems and compare the results with other multigrid methods.  相似文献   

8.
We study the properties of the Lagrange multiplier for an Allen–Cahn equation with a double obstacle potential. Here, the dynamic boundary condition, including the Laplace–Beltrami operator on the boundary, is investigated. We then establish the singular limit of our system and clarify the limit of the solution and the Lagrange multiplier of our problem. We present remarks on a trace problem as well as on the Neumann boundary condition. Moreover, we describe a numerical experiment for a problem with Neumann boundary condition using the Lagrange multiplier. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A framework is proposed for constructing algebraic multigrid transfer operators suitable for nonsymmetric positive definite linear systems. This framework follows a Schur complement perspective as this is suitable for both symmetric and nonsymmetric systems. In particular, a connection between algebraic multigrid and approximate block factorizations is explored. This connection demonstrates that the convergence rate of a two‐level model multigrid iteration is completely governed by how well the coarse discretization approximates a Schur complement operator. The new grid transfer algorithm is then based on computing a Schur complement but restricting the solution space of the corresponding grid transfers in a Galerkin‐style so that a far less expensive approximation is obtained. The final algorithm corresponds to a Richardson‐type iteration that is used to improve a simple initial prolongator or a simple initial restrictor. Numerical results are presented illustrating the performance of the resulting algebraic multigrid method on highly nonsymmetric systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A new prolongator is proposed for smoothed aggregation (SA) multigrid. The proposed prolongator addresses a limitation of standard SA when it is applied to anisotropic problems. For anisotropic problems, it is fairly standard to generate small aggregates (used to mimic semi‐coarsening) in order to coarsen only in directions of strong coupling. Although beneficial to convergence, this can lead to a prohibitively large number of non‐zeros in the standard SA prolongator and the corresponding coarse discretization operator. To avoid this, the new prolongator modifies the standard prolongator by shifting support (non‐zeros within a prolongator column) from one aggregate to another to satisfy a specified non‐zero pattern. This leads to a sparser operator that can be used effectively within a multigrid V‐cycle. The key to this algorithm is that it preserves certain null space interpolation properties that are central to SA for both scalar and systems of partial differential equations (PDEs). We present two‐dimensional and three‐dimensional numerical experiments to demonstrate that the new method is competitive with standard SA for scalar problems, and significantly better for problems arising from PDE systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, a reliable technique for calculating general Lagrange multiplier operator is suggested. The new algorithm, which is based on the calculus of variations, offers a simple method for calculation of general Lagrange multiplier for all forms. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 996–1001, 2011  相似文献   

12.
We propose a stabilized finite element method for the approximation of the biharmonic equation with a clamped boundary condition. The mixed formulation of the biharmonic equation is obtained by introducing the gradient of the solution and a Lagrange multiplier as new unknowns. Working with a pair of bases forming a biorthogonal system, we can easily eliminate the gradient of the solution and the Lagrange multiplier from the saddle point system leading to a positive definite formulation. Using a superconvergence property of a gradient recovery operator, we prove an optimal a priori estimate for the finite element discretization for a class of meshes.  相似文献   

13.
In this paper, a second‐order fast explicit operator splitting method is proposed to solve the mass‐conserving Allen–Cahn equation with a space–time‐dependent Lagrange multiplier. The space–time‐dependent Lagrange multiplier can preserve the volume of the system and keep small features. Moreover, we analyze the discrete maximum principle and the convergence rate of the fast explicit operator splitting method. The proposed numerical scheme is of spectral accuracy in space and of second‐order accuracy in time, which greatly improves the computational efficiency. Numerical experiments are presented to confirm the accuracy, efficiency, mass conservation, and stability of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
1.IntroductionSeveralaspectsofthenonconfOrmingfi11iteelementmethodhavebeendiscussedin[1-51.Inthispaper,wewillintroducethemllltigridmethodandprovethatthemultigridmethodofnonconformingfiniteelementscanattainthesameoptimalconvergenceorderaJsthenonconformingflniteelementmethodinenergy-norm.Themultigridmethodofconformingfiniteelementshasbeen.t.died[7-8].Forthemultigridmethodofnonconformingfiniteele1nents,becausethefiniteelementspacesassociatedwiththenetsarenotnest(Vk-1ctVK),itisdifficulttodefinet…  相似文献   

15.
The classical method for optimizing a functional subject to an integral constraint is to introduce the Lagrange multiplier and apply the Euler-Lagrange equations to the augmented integrand. The Lagrange multiplier is a constant whose value is selected such that the integral constraint is satisfied. This value is frequently an eigenvalue of the boundary-value problem and is determined by a trial-and-error procedure. A new approach for solving this isoperimetric problem is presented. The Lagrange multiplier is introduced as a state variable and evaluated simultaneously with the optimum solution. A numerical example is given and is shown to have a large region of convergence.  相似文献   

16.
This paper deals with Lagrange multiplier methods which are interpreted as pathfollowing methods. We investigate how successful these methods can be for solving “really nonconvex” problems. Singularity theory developed by Jongen-Jonker-Twilt will be used as a successful tool for providing an answer to this question. Certain modifications of the original Lagrange multiplier method extend the possibilities for solving nonlinear optimization problems, but in the worst case we have to find all connected components in the set of all generalized critical points. That is still an open problem. This paper is a continuation of our research with respect to penalty methods (part I) and exact penalty methods (part II).  相似文献   

17.
In this paper, we introduce a multigrid method for solving the nonliear Urysohn integral equation. The algorithm is derived from a discrete resolvent equation which approximates the continuous resolvent equation of the nonlinear Urysohn integral equation. The algorithm is mathematically equivalent to Atkinson’s adaptive twogrid iteration. But the two are different computationally. We show the convergence of the algorithm and its equivalence to Atkinson’s adaptive twogrid iteration. In our numerical example, we compare our algorithm to other multigrid methods for solving the nonliear Urysohn integral equation including the nonlinear multigrid method introduced by Hackbush.  相似文献   

18.
We present a mixed method for a three-dimensional axisymmetric div-curl system reduced to a two-dimensional computational domain via cylindrical coordinates. We show that when the meridian axisymmetric Maxwell problem is approximated by a mixed method using the lowest order elements (for the vector variable) and linear elements (for the Lagrange multiplier), one obtains optimal error estimates in certain weighted Sobolev norms. The main ingredient of the analysis is a sequence of projectors in the weighted norms satisfying some commutativity properties.

  相似文献   


19.
Approximation of the Neumann problem for a second order elliptic operator by a fictitious domain method with a Lagrange multiplier on the boundary is considered. The problem is written in its vectorial dual formulation and H(div) mixed finite elements for the vector unknown and H1/2 conforming elements for the multiplier are used. The uniform inf-sup condition is demonstrated under a compatibility condition between surface and volume meshes.  相似文献   

20.
石钟慈  谢正辉 《计算数学》1997,19(3):313-328
1.引言设0是RZ中的有界多边形区域,其边界为Rfl.考虑下面的重调和Dirichlet问题:(1.1)的变分形式为:求。EHI(fi)使得对?/EL‘(m,问题(1.幻的唯一可解性可由冯(m上的M线性型的强制性和连续性以及La。Mlgram定理得出(of[4]).令人一{丸)是n的一个三角剖分,并且满足最小角条件,其中h是它的网格参数.设Vh为Money元空间[41.问题(1.2)的有限元离散问题为:求。eVh使得当有限元参数人很小时,这个方程组很大,而且矩阵A的条件数变得非常大,直接求解,存贮量及计算量都很大.如果B可逆,则方程组(1.4)等…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号