首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, analogous to chance constraints, real-life necessity and possibility constraints in the context of a multi-item dynamic production-inventory control system are defined and defuzzified following fuzzy relations. Hence, a realistic multi-item production-inventory model with shortages and fuzzy constraints has been formulated and solved for optimal production with the objective of having minimum cost. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the present system produces some defective units along with the perfect ones and the rate of produced defective units is constant. Here demand of the good units is time dependent and known and the defective units are of no use. The space required per unit item, available storage space and investment capital are assumed to be imprecise. The space and budget constraints are of necessity and/or possibility types. The model is formulated as an optimal control problem and solved for optimum production function using Pontryagin’s optimal control policy, the Kuhn–Tucker conditions and generalized reduced gradient (GRG) technique. The model is illustrated numerically and values of demand, optimal production function and stock level are presented in both tabular and graphical forms. The sensitivity of the cost functional due to the changes in confidence level of imprecise constraints is also presented.  相似文献   

2.
Multi-item inventory model with stock-dependent demand and two-storage facilities is developed in fuzzy environment (purchase cost, investment amount and storehouse capacity are imprecise) under inflation and time value of money. Joint replenishment and simultaneous transfer of items from one warehouse to another is proposed using basic period (BP) policy. As some parameters are fuzzy in nature, objective (average profit) function as well as some constraints are imprecise in nature. Model is formulated as to optimize the possibility/necessity measure of the fuzzy goal of the objective function and constraints are satisfied with some pre-defined necessity. A genetic algorithm (GA) is developed with roulette wheel selection, binary crossover and mutation and is used to solve the model when the equivalent crisp form of the model is available. In other cases fuzzy simulation process is proposed to measure possibility/necessity of the fuzzy goal as well as to check the constraints of the problem and finally the model is solved using fuzzy simulation based genetic algorithm (FSGA). The models are illustrated with some numerical examples and some sensitivity analyses have been done.  相似文献   

3.
In this paper, an optimal production inventory model with fuzzy time period and fuzzy inventory costs for defective items is formulated and solved under fuzzy space constraint. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the demand is linearly stock dependent. The defective rate is taken as random, the inventory holding cost and production cost are imprecise. The fuzzy parameters are converted to crisp ones using credibility measure theory. The different items have the different imprecise time periods and the minimization of cost for each item leads to a multi-objective optimization problem. The model is under the single management house and desired inventory level and product cost for each item are prescribed. The multi-objective problem is reduced to a single objective problem using Global Criteria Method (GCM) and solved with the help of Fuzzy Riemann Integral (FRI) method, Kuhn–Tucker condition and Generalised Reduced Gradient (GRG) technique. In optimum results including production functions and corresponding optimum costs for the different models are obtained and then are presented in tabular forms.  相似文献   

4.
In this paper, realistic production-inventory models without shortages for deteriorating items with imprecise holding and production costs for optimal production have been formulated. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the demand is time dependent and known. The imprecise holding and production costs are assumed to be represented by fuzzy numbers which are transformed to corresponding interval numbers. Following interval mathematics, the objective function is changed to respective multi-objective functions and thus the single-objective problem is reduced to a multi-objective decision making(MODM) problem. The MODM problem is then again transformed to a single objective function with the help of weighted sum method and then solved using global criteria method, calculus method, the Kuhn–Tucker conditions and generalized reduced gradient(GRG) technique. The models have been illustrated by numerical data. The optimum results for different objectives are obtained for different types of production function. Numerical values of demand, production function and stock level are presented in both tabular and graphical forms  相似文献   

5.
In this paper, multi-item economic production quantity (EPQ) models with selling price dependent demand, infinite production rate, stock dependent unit production and holding costs are considered. Flexibility and reliability consideration are introduced in the production process. The models are developed under two fuzzy environments–one with fuzzy goal and fuzzy restrictions on storage area and the other with unit cost as fuzzy and possibility–necessity restrictions on storage space. The objective goal and constraint goal are defined by membership functions and the presence of fuzzy parameters in the objective function is dealt with fuzzy possibility/necessity measures. The models are formed as maximization problems. The first one—the fuzzy goal programming problem is solved using Fuzzy Additive Goal Programming (FAGP) and Modified Geometric Programming (MGP) methods. The second model with fuzzy possibility/necessity measures is solved by Geometric Programming (GP) method. The models are illustrated through numerical examples. The sensitivity analyses of the profit function due to different measures of possibility and necessity are performed and presented graphically.  相似文献   

6.
In this paper, a production-repairing inventory model in fuzzy rough environment is proposed incorporating inflationary effects where a part of the produced defective units are repaired and sold as fresh units. Here, production and repairing rates are assumed as dynamic control variables. Due to complexity of environment, different costs and coefficients are considered as fuzzy rough type and these are reduced to crisp ones using fuzzy rough expectation. Here production cost is production rate dependent, repairing cost is repairing rate dependent and demand of the item is stock-dependent. Goal of the research work is to find decisions for the decision maker (DM) who likes to maximize the total profit from the above system for a finite time horizon. The model is formulated as an optimal control problem and solved using a gradient based non-linear optimization method. Some particular cases of the general model are derived. The results of the models are illustrated with some numerical examples.  相似文献   

7.
A genetic algorithm (GA) with varying population size is developed where crossover probability is a function of parents’ age-type (young, middle-aged, old, etc.) and is obtained using a fuzzy rule base and possibility theory. It is an improved GA where a subset of better children is included with the parent population for next generation and size of this subset is a percentage of the size of its parent set. This GA is used to make managerial decision for an inventory model of a newly launched product. It is assumed that lifetime of the product is finite and imprecise (fuzzy) in nature. Here wholesaler/producer offers a delay period of payment to its retailers to capture the market. Due to this facility retailer also offers a fixed credit-period to its customers for some cycles to boost the demand. During these cycles demand of the item increases with time at a decreasing rate depending upon the duration of customers’ credit-period. Models are formulated for both the crisp and fuzzy inventory parameters to maximize the present value of total possible profit from the whole planning horizon under inflation and time value of money. Fuzzy models are transferred to deterministic ones following possibility/necessity measure on fuzzy goal and necessity measure on imprecise constraints. Finally optimal decision is made using above mentioned GA. Performance of the proposed GA on the model with respect to some other GAs are compared.  相似文献   

8.
This paper considers a single product inventory control in a Distribution Supply Chain (DSC). The DSC operates in the presence of uncertainty in customer demands. The demands are described by imprecise linguistic expressions that are modelled by discrete fuzzy sets. Inventories at each facility within the DSC are replenished by applying periodic review policies with optimal order up-to-quantities. Fuzzy customer demands imply fuzziness in inventory positions at the end of review intervals and in incurred relevant costs per unit time interval. The determination of the minimum of defuzzified total cost of the DSC is a complex problem which is solved by applying decomposition; the original problem is decomposed into a number of simpler independent optimisation subproblems, where each retailer and the warehouse determine their optimum periodic reviews and order up-to-quantities. An iterative coordination mechanism is proposed for changing the review periods and order up-to-quantities for each retailer and the warehouse in such a way that all parties within the DSC are satisfied with respect to total incurred costs per unit time interval. Coordination is performed by introducing fuzzy constraints on review periods and fuzzy tolerances on retailers and warehouse costs in local optimisation subproblems.  相似文献   

9.
This paper is concerned with determination of optimal run time for an economic production quantity (EPQ) model with scrap, rework, and stochastic machine breakdowns. In real life manufacturing systems, generation of defective items and random breakdown of production equipment are inevitable. In this study, a portion of the defective items is considered to be scrap, while the other is assumed to be repairable. Total production-inventory cost functions are derived respectively for both EPQ models with breakdown (no-resumption policy is adopted) and without breakdown taking place. These cost functions are integrated and the renewal reward theorem is used to cope with the variable cycle length. Theorems on conditional convexity of the integrated overall costs and bounds of the production run time are proposed and proved. We conclude that the optimal run time falls within the range of bounds and it can be pinpointed by the use of the bisection method based on the intermediate value theorem. Numerical example is provided to demonstrate its practical usages.  相似文献   

10.
An inventory model for a deteriorating item (seasonal product) with linearly displayed stock dependent demand is developed in imprecise environment (involving both fuzzy and random parameters) under inflation and time value of money. It is assumed that time horizon, i.e., period of business is random and follows exponential distribution with a known mean. The resultant effect of inflation and time value of money is assumed as fuzzy in nature. The particular case, when resultant effect of inflation and time value is crisp in nature, is also analyzed. A genetic algorithm (GA) is developed with roulette wheel selection, arithmetic crossover, random mutation. For crisp inflation effect, the total expected profit for the planning horizon is maximized using the above GA to derive optimal inventory decision. On the other hand when inflationary effect is fuzzy then the above expected profit is fuzzy in nature too. Since optimization of fuzzy objective is not well defined, the optimistic/pessimistic return of the expected profit is obtained using possibility/necessity measure of fuzzy event. Fuzzy simulation process is proposed to determine this optimistic/pessimistic return. Finally a fuzzy simulation based GA is developed and is used to maximize the above optimistic/pessimistic return to get optimal decision. The models are illustrated with some numerical examples and some sensitivity analyses have been presented.  相似文献   

11.
This study deals with a multi-item mixture inventory model in which both demand and lead time are random. A budget constraint is also added to this model. The optimization problem with budget constraint is then transformed into a multi-objective optimization problem with the help of fuzzy chance-constrained programming technique and surprise function. In our studies, we relax the assumption about the demand, lead time and demand during lead time that follows a known distribution and then apply the minimax distribution free procedure to solve the problem. We develop an algorithm procedure to find the optimal order quantity and optimal value of the safety factor. Finally, the model is illustrated by a numerical example.  相似文献   

12.
针对制造商订货、储存、生产过程中的碳排放问题,探讨了碳限额与碳交易约束下制造商生产-库存控制策略,在对碳限额与碳交易进行数学度量的基础上构建了碳限额与碳交易约束下制造商生产-库存成本模型,并通过模型分析得出有碳约束且成本最优生产量及原材料最大订货倍数以及碳限额与碳交易约束下制造商最优生产-库存策略。计算实验与算例分析表明:相比于无碳约束情形,碳限额与碳交易约束下制造商订货数量更高,而订货频率及生产批量更低,并得出三种交易价格之下,决策变量的变化趋势。  相似文献   

13.
Normally inventory models of deteriorating items, such as food products, vegetables, etc. involve imprecise parameters, like imprecise inventory costs, fuzzy storage area, fuzzy budget allocation, etc. In this paper, we aim to provide two defuzzification techniques for two fuzzy inventory models using (i) extension principle and duality theory of non-linear programming and (ii) interval arithmetic. On the basis of Zadeh’s extension principle, two non-linear programs parameterized by the possibility level α are formulated to calculate the lower and upper bounds of the minimum average cost at α-level, through which the membership function of the objective function is constructed. In interval arithmetic technique the interval objective function has been transformed into an equivalent deterministic multi-objective problem defined by the left and right limits of the interval. This formulation corresponds to the possibility level, α = 0.5. Finally, the multi-objective problem is solved by a multi-objective genetic algorithm (MOGA). The model has been illustrated through a numerical example and solved for different values of possibility level, α through extension principle and for α = 0.5 via MOGA. As a particular case, the results have been obtained for the inventory model without deterioration. Results from two methods for α = 0.5 are compared.  相似文献   

14.
A multi-objective multi-item solid transportation problem with fuzzy coefficients for the objectives and constraints, is modeled and then solved by two different methods. A defuzzification method based on fuzzy linear programming is applied for fuzzy supplies, demands and conveyance capacities, including the condition that both total supply and conveyance capacity must not fall below the total demand. First, expected values of the fuzzy objective functions are considered to derive crisp values. Another method based on the concept of “minimum of fuzzy number” is applied for the objective functions that yields fuzzy values instead of particular crisp values for the fuzzy objectives. Fuzzy programming technique and global criterion method are applied to derive optimal compromise solutions of multi-objectives. A numerical example is solved using above mentioned methods and corresponding results are compared.  相似文献   

15.
This paper deals with one equality constraint in fuzzy environment and other inequality constraint with both fuzzy and random parameter together. The purpose of this paper is to demonstrate the application of these type of constraints in a production inventory model solved as a Bang–Bang control problem in a finite time horizon. Finally numerical experiments have been performed for illustration.  相似文献   

16.
In this paper, a multi-item multi-period optimal production control problem with variable preparation time and limited available space is formulated and solved. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the demand is linearly stock dependent. The preparation time is assumed and considered to be a variable. Production and set-up costs are dependent on preparation time. Here, preparation time influences the production cost negatively and set-up cost positively. Also the space constraint is assumed to be fuzzy-random in nature and with the help of Mean Chance Constraint Method, the fuzzy-random space constraint is converted to a crisp one. This problem is formulated as an optimal control problem and solved with the help of Genetic Algorithm (GA). Best optimum and the second best optimum results are obtained and these are also presented in tabular forms and graphically.  相似文献   

17.
Some classical studies on economic production quantity (EPQ) models with imperfect production processes have focused on determining the optimal production lot size. However, these models neglect the fact that the total production-inventory costs can be reduced by reworking imperfect items for a relatively small repair and holding cost. To account for the above phenomenon, we take the out of stock and rework into account and establish an EPQ model with imperfect production processes, failure in repair and complete backlogging. Furthermore, we assume that the holding cost of imperfect items is distinguished from that of perfect ones, as well as, the costs of repair, disposal, and shortage are all included in the proposed model. In addition, without taking complex differential calculus to determine the optimal production lot size and backorder level, we employ an arithmetic-geometric mean inequality method to determine the optimal solutions. Finally, numerical examples and sensitivity analysis are analyzed to illustrate the validity of the proposed model. Some managerial insights are obtained from the numerical examples.  相似文献   

18.
Given high variability of demands for short life cycle products, a retailer has to decide about the products’ prices and order quantities from a manufacturer. In the meantime, the manufacturer has to determine an aggregate production plan involving for example, production, inventory and work force levels in a multi period, multi product environment. Due to imprecise and fuzzy nature of products’ parameters such as unit production and replenishment costs, a hybrid fuzzy multi-objective programming model including both quantative and qualitative constraints and objectives is proposed to determine the optimalprice markdown policy and aggregate production planning in a two echelon supply chain. The model aims to maximize the total profit of manufacturer, the total profit of retailer and improving service aspects of retailing simultaneously. After applying appropriate strategies to defuzzify the original model, the equivalent multi-objective crisp model is then solved by a fuzzy goal programming method. An illustrative example is also provided to show the applicability and usefulness of the proposed model and solution method.  相似文献   

19.
This paper presents an integrated production-inventory model where a vendor produces an item in a batch production environment and supplies it to a set of buyers. The buyer level demand is assumed to be independent normally distributed and lead time of every buyer can be reduced at an added crash cost. The buyers review their inventory using continuous review policy, and the unsatisfied demand at the buyers is completely backordered. A model is formulated to minimize the joint total expected cost of the vendor–buyers system to determine the optimal production-inventory policy. Since it is often difficult to estimate the stock-out cost in inventory systems, and so instead of having stock-out cost component in the objective function, a service level constraint (SLC) corresponding to each buyer is included in the model. A Lagrangian multiplier technique based algorithmic approach is proposed, which evaluates a very limited number of combinations of lead time of the buyers to find simultaneously the optimal lead time, order quantity and safety factor of the buyers and the number of shipments between the vendor and the buyers in a production cycle. Finally, a numerical example and effects of the key parameters are included to illustrate the results of the proposed model.  相似文献   

20.
In this paper, a periodic review inventory system has been analyzed in a mixed imprecise and uncertain environment where fuzziness and randomness appear simultaneously. A model has been developed with customer demand assumed to be a fuzzy random variable. The lead-time has been assumed to be a constant. The lead-time demand and the lead-time plus one period’s demand have also been assumed to be fuzzy random variables. A methodology has been developed to determine the optimal inventory level and the optimal period of review such that the total expected annual cost in the fuzzy sense is minimized. A numerical example has been presented to illustrate the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号