首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
The aim of this paper is to deal with a multiobjective linear programming problem with fuzzy random coefficients. Some crisp equivalent models are presented and a traditional algorithm based on an interactive fuzzy satisfying method is proposed to obtain the decision maker’s satisfying solution. In addition, the technique of fuzzy random simulation is adopted to handle general fuzzy random objective functions and fuzzy random constraints which are usually hard to be converted into their crisp equivalents. Furthermore, combined with the techniques of fuzzy random simulation, a genetic algorithm using the compromise approach is designed for solving a fuzzy random multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.  相似文献   

2.
This paper develops a simple approach to critical path analysis in a project network with activity times being fuzzy numbers. The idea is based on the linear programming (LP) formulation and fuzzy number ranking method. The fuzzy critical path problem is formulated as an LP model with fuzzy coefficients of the objective function, and then on the basis of properties of linearity and additivity, the Yager’s ranking method is adopted to transform the fuzzy LP formulation to the crisp one which can be solved by using the conventional streamlined solution methods. Consequently, the critical path and total duration time can be obtained from the derived optimal solution. Moreover, in this paper we also define the most critical path and the relative path degree of criticality, which are theoretically sound and easy to use in practice. An example discussed in some previous studies illustrates that the proposed approach is able to find the most critical path, which is proved to be the same as that derived from an exhausted comparison of all possible paths. The proposed approach is very simple to apply, and it is not require knowing the explicit form of the membership functions of the fuzzy activity times.  相似文献   

3.
A bi-matrix game with fuzzy goal is shown to be equivalent to a (crisp) non-linear programming problem in which the objective as well as all constraint functions are linear except two constraint functions, which are quadratic. This equivalence is further extended to bi-matrix games with fuzzy pay-offs, as well as to bi-matrix games with fuzzy goals and fuzzy payoffs, whose equilibrium strategies are conceptualized by employing a suitable ranking (defuzzification) function.  相似文献   

4.
This paper proposes a mathematical programming method to construct the membership functions of the fuzzy objective value of the cost-based queueing decision problem with the cost coefficients and the arrival rate being fuzzy numbers. On the basis of Zadeh’s extension principle, three pairs of mixed integer nonlinear programs (MINLP) parameterized by the possibility level α are formulated to calculate the lower and upper bounds of the minimal expected total cost per unit time at α, through which the membership function of the minimal expected total cost per unit time of the fuzzy objective value is constructed. To provide a suitable optimal service rate for designing queueing systems, the Yager’s ranking index method is adopted. Two numerical examples are solved successfully to demonstrate the validity of the proposed method. Since the objective value is completely expressed by a membership function rather than by a crisp value, it conserves the fuzziness of the input information, thus more information is provided for designing queueing systems. The successful extension of queueing decision models to fuzzy environments permits queueing decision models to have wider applications in practice.  相似文献   

5.
《Applied Mathematical Modelling》2014,38(19-20):4673-4685
This paper proposes an enhanced interactive satisficing method via alternative tolerance for fuzzy goal programming with progressive preference. The alternative tolerances of the fuzzy objectives with three types of fuzzy relations are used to model progressive preference of decision maker. In order to improve the dissatisficing objectives, the relaxed satisficing objectives are sacrificed by modifying their tolerant limits. By means of attainable reference point, the auxiliary programming is designed to generate the tolerances of the dissatisficing objectives for ensuring feasibility. Correspondingly, the membership functions are updated or the objective constraints are added. The Max–Min goal programming model (or the revised one) and the test model of the M-Pareto optimality are solved lexicographically. By our method, the dissatisficing objectives are improved iteratively till the preferred result is acquired. Illustrative examples show its power.  相似文献   

6.
In multi-objective geometric programming problem there are more than one objective functions. There is no single optimal solution which simultaneously optimizes all the objective functions. Under these conditions the decision makers always search for the most “preferred” solution, in contrast to the optimal solution. A few mathematical programming methods namely fuzzy programming, goal programming and weighting methods have been applied in the recent past to find the compromise solution. In this paper ??-constraint method has been applied to find the non-inferior solution. A brief solution procedure of ??-constraint method has been presented to find the non-inferior solution of the multi-objective programming problems. Further, the multi-objective programming problems is solved by the fuzzy programming technique to find the optimal compromise solution. Finally, two numerical examples are solved by both the methods and compared with their obtained solutions.  相似文献   

7.
In this paper, a new scheme is proposed to find the fuzzy interpolation polynomial. In this case, the nodes are crisp data and the values are fuzzy numbers. In order to obtain the interpolation polynomial, a linear system is solved with crisp coefficients matrix and fuzzy right hand side. Then, the inherited lower-upper (LU) triangular factorization and inherited interpolation are applied to solve this system. The examples illustrate the applicability, simplicity and efficiency of the proposed method.  相似文献   

8.
The main objective of this work is to put forward chance constrained mixed-integer nonlinear stochastic and fuzzy programming models for refinery short-term crude oil scheduling problem under demands uncertainty of distillation units. The scheduling problem studied has characteristics of discrete events and continuous events coexistence, multistage, multiproduct, nonlinear, uncertainty and large scale. At first, the two models are transformed into their equivalent stochastic and fuzzy mixed-integer linear programming (MILP) models by using the method of Quesada and Grossmann [I. Quesada, I E. Grossmann, Global optimization of bilinear process networks with multicomponent flows, Comput. Chem. Eng. 19 (12) (1995) 1219–1242], respectively. After that, the stochastic equivalent model is converted into its deterministic MILP model through probabilistic theory. The fuzzy equivalent model is transformed into its crisp MILP model relies on the fuzzy theory presented by Liu and Iwamura [B.D. Liu, K. Iwamura, Chance constrained programming with fuzzy parameters, Fuzzy Sets Syst. 94 (2) (1998) 227–237] for the first time in this area. Finally, the two crisp MILP models are solved in LINGO 8.0 based on scheduling time discretization. A case study which has 267 continuous variables, 68 binary variables and 320 constraints is effectively solved with the solution approaches proposed.  相似文献   

9.
This paper describes the use of preemptive priority based fuzzy goal programming method to fuzzy multiobjective fractional decision making problems under the framework of multistage dynamic programming. In the proposed approach, the membership functions for the defined objective goals with fuzzy aspiration levels are determined first without linearizing the fractional objectives which may have linear or nonlinear forms. Then the problem is solved recursively for achievement of the highest membership value (unity) by using priority based goal programming methodology at each decision stages and thereby identifying the optimal decision in the present decision making arena. A numerical example is solved to represent potentiality of the proposed approach.  相似文献   

10.
《Applied Mathematical Modelling》2014,38(17-18):4388-4395
Linear programming (LP) is a widely used optimization method for solving real-life problems because of its efficiency. Although precise data are fundamentally indispensable in conventional LP problems, the observed values of the data in real-life problems are often imprecise. Fuzzy sets theory has been extensively used to represent imprecise data in LP by formalizing the inaccuracies inherent in human decision-making. The fuzzy LP (FLP) models in the literature generally either incorporate the imprecisions related to the coefficients of the objective function, the values of the right-hand-side, and/or the elements of the coefficient matrix. We propose a new method for solving FLP problems in which the coefficients of the objective function and the values of the right-hand-side are represented by symmetric trapezoidal fuzzy numbers while the elements of the coefficient matrix are represented by real numbers. We convert the FLP problem into an equivalent crisp LP problem and solve the crisp problem with the standard primal simplex method. We show that the method proposed in this study is simpler and computationally more efficient than two competing FLP methods commonly used in the literature.  相似文献   

11.
We consider a real-world automobile supply chain in which a first-tier supplier serves an assembler and determines its procurement transport planning for a second-tier supplier by using the automobile assembler’s demand information, the available capacity of trucks and inventory levels. The proposed fuzzy multi-objective integer linear programming model (FMOILP) improves the transport planning process for material procurement at the first-tier supplier level, which is subject to product groups composed of items that must be ordered together, order lot sizes, fuzzy aspiration levels for inventory and used trucks and uncertain truck maximum available capacities and minimum percentages of demand in stock. Regarding the defuzzification process, we apply two existing methods based on the weighted average method to convert the FMOILP into a crisp MOILP to then apply two different aggregation functions, which we compare, to transform this crisp MOILP into a single objective MILP model. A sensitivity analysis is included to show the impact of the objectives weight vector on the final solutions. The model, based on the full truck load material pick method, provides the quantity of products and number of containers to be loaded per truck and period. An industrial automobile supply chain case study demonstrates the feasibility of applying the proposed model and the solution methodology to a realistic procurement transport planning problem. The results provide lower stock levels and higher occupation of the trucks used to fulfill both demand and minimum inventory requirements than those obtained by the manual spreadsheet-based method.  相似文献   

12.
Multi-item inventory models with two storage facility and bulk release pattern are developed with linearly time dependent demand in a finite time horizon under crisp, stochastic and fuzzy-stochastic environments. Here different inventory parameters—holding costs, ordering costs, purchase costs, etc.—are assumed as probabilistic or fuzzy in nature. In particular cases stochastic and crisp models are derived. Models are formulated as profit maximization principle and three different approaches are proposed for solution. In the first approach, fuzzy extension principle is used to find membership function of the objective function and then it’s Graded Mean Integration Value (GMIV) for different optimistic levels are taken as equivalent stochastic objectives. Then the stochastic model is transformed to a constraint multi-objective programming problem using Stochastic Non-linear Programming (SNLP) technique. The multi-objective problems are transferred to single objective problems using Interactive Fuzzy Satisfising (IFS) technique. Finally, a Region Reducing Genetic Algorithm (RRGA) based on entropy has been developed and implemented to solve the single objective problems. In the second approach, the above GMIV (which is stochastic in nature) is optimized with some degree of probability and using SNLP technique model is transferred to an equivalent single objective crisp problem and solved using RRGA. In the third approach, objective function is optimized with some degree of possibility/necessity and following this approach model is transformed to an equivalent constrained stochastic programming problem. Then it is transformed to an equivalent single objective crisp problem using SNLP technique and solved via RRGA. The models are illustrated with some numerical examples and some sensitivity analyses have been presented.  相似文献   

13.
An interactive satisficing method based on alternative tolerance is proposed for fuzzy multiple objective optimization. The new tolerances of the dissatisficing objectives are generated using an auxiliary programming problem. According to the alternative tolerant limits, either the membership functions are changed, or the objective constraints are added. The lexicographic two-phase programming is implemented to find the final solution. The results of the dissatisficing objectives are iteratively improved. The presented method not only acquires the efficient or weak efficient solution of all the objectives, but also satisfies the progressive preference of decision maker. Numerical examples show its power.  相似文献   

14.
This paper proposes an approach to critical path analysis for a project network with activity times being fuzzy numbers, in that the membership function of the fuzzy total duration time is constructed. The basic idea is based on the extension principle and linear programming formulation. A pair of linear programs parameterized by possibility level α is formulated to calculate the lower and upper bounds of the fuzzy total duration time at α. By enumerating different values of α, the membership function of the fuzzy total duration time is constructed, and the fuzzy critical paths are identified at the same time. Moreover, by applying the Yager ranking method, definitions of the most critical path and the relative degree of criticality of paths are developed; and these definitions are theoretically sound and easy to use in practice. Two examples with activity times being fuzzy numbers of L-R and L-L types discussed in previous studies are solved successfully to demonstrate the validity of the proposed approach. Since the total duration time is completely expressed by a membership function rather than by a crisp value, the fuzziness of activity times is conserved completely, and more information is provided for critical path analysis.  相似文献   

15.
偏好信息为模糊互反判断矩阵的模糊多属性决策法   总被引:14,自引:1,他引:14  
研究只有部分权重信息且决策者对方案的偏好信息以模糊互反判断矩阵形式给出的模糊多属性决策问题。提出了一种基于目标规划模型的模糊多属性决策方法。该法首先基于模糊互反判断矩阵,利用转换函数将决策信息一致化,建立了一个目标规划模型.通过求解该模型确定属性的权重,然后运用加性加权法求出各方案的模糊综合属性值,并利用已有的三角模糊数排序公式求得决策方案的排序。文章最后把该法应用于解决风险投资领域中的项目评估问题。  相似文献   

16.
Various types of formulations or solution methods have been proposed with fuzzy multi-goal programming, but most of them exclusively take linear functions as objective functions. However among the elements exhibited as goals, some goals that can be expressed with a ratio equation are available. Therefore, models that can handle such a fractional goal are preferable. On the other hand, most of the methods are of the type with which solutions can be obtained by crisp values. However since the elements composing problems are given by vague numerical values, the solutions should depend on the degree of vagueness. Accordingly it is natural that the solutions themselves are calculated as vague numerical values. As one of the models based upon such an idea, Kono et al.'s method is recommendable. However even this method cannot handle fractional goals. In this study, we propose a new method that expands Kono et al.'s method and allows also fractional goals.  相似文献   

17.
This paper proposes a novel approach for time-cost trade-off analysis of a project network in fuzzy environments. Different from the results of previous studies, in this paper the membership function of the fuzzy minimum total crash cost is constructed based on Zadeh’s extension principle and fuzzy solutions are provided. A pair of two-level mathematical programs parameterized by possibility level α is formulated to calculate the lower and upper bounds of the fuzzy minimum total crash cost at α. By enumerating different values of α, the membership function of the fuzzy minimum total crash cost is constructed, and the corresponding optimal activity time for each activity is also obtained at the same time. An example of time-cost trade-off problem with several fuzzy parameters is solved successfully to demonstrate the validity of the proposed approach. Since the minimum total crash cost is expressed by a membership function rather than by a crisp value, the fuzziness of parameters is conserved completely, and more information is provided for time-cost trade-off analysis in project management. The proposed approach also can be applied to time-cost trade-off problems with other characteristics.  相似文献   

18.
This paper discusses a manufacturing inventory model with shortages where carrying cost, shortage cost, setup cost and demand quantity are considered as fuzzy numbers. The fuzzy parameters are transformed into corresponding interval numbers and then the interval objective function has been transformed into a classical multi-objective EPQ (economic production quantity) problem. To minimize the interval objective function, the order relation that represents the decision maker’s preference between interval objective functions has been defined by the right limit, left limit, center and half width of an interval. Finally, the transformed problem has been solved by intuitionistic fuzzy programming technique. The proposed method is illustrated with a numerical example and Pareto optimality test has been applied as well.  相似文献   

19.
This paper proposes a parametric programming approach to analyze the fuzzy maximum total return in the continuous knapsack problem with fuzzy objective weights, in that the membership function of the maximum total return is constructed. The idea is based on Zadeh’s extension principle, α-cut representation, and the duality theorem of linear programming. A pair of linear programs parameterized by possibility level α is formulated to calculate the lower and upper bounds of the fuzzy maximum total return at α, through which the membership function of the maximum total return is constructed. To demonstrate the validity of the proposed procedure, an example studied by the previous studies is investigated successfully. Since the fuzzy maximum total return is completely expressed by a membership function rather than by a crisp value reported in previous studies, the fuzziness of object weights is conserved completely, and more information is provided for making decisions in real-world resource allocation applications. The generalization of the proposed approach for other types of knapsack problems is also straightforward.  相似文献   

20.
A fuzzy EOQ model is developed with limited storage capacity where demand is related to the unit price and the setup cost varies with the quantity produced/purchased. Here fuzziness is introduced in both objective function and storage area. It is solved by both fuzzy nonlinear and geometric programming techniques for linear membership functions. The model is illustrated with a numerical example and a sensivity analysis is made. Generalisation to a multi-item problem is also presented and its numerical results are compared with those of the crisp model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号