首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper shows that there is a close relationship between the Euclidean algorithm for polynomials and the Lanczos method for solving sparse linear systems, especially when working over finite fields. It uses this relationship to account rigorously for the appearance of self-orthogonal vectors arising in the course of the Lanczos algorithm. It presents an improved Lanczos method which overcomes problems with self-orthogonality and compares this improved algorithm with the Euclidean algorithm.

  相似文献   


2.
We study the Lanczos method for solving symmetric linear systems with multiple right‐hand sides. First, we propose a numerical method of implementing the Lanczos method, which can provide all approximations to the solution vectors of the remaining linear systems. We also seek possible application of this algorithm for solving the linear systems that occur in continuation problems. Sample numerical results are reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
We study the Lanczos type methods for continuation problems. First we indicate how the symmetric Lanczos method may be used to solve both positive definite and indefinite linear systems. Furthermore, it can be used to monitor the simple bifurcation points on the solution curve of the eigenvalue problems. This includes computing the minimum eigenvalue, the minimum singular value, and the condition number of the partial tridiagonalizations of the coefficient matrices. The Ritz vector thus obtained can be applied to compute the tangent vector at the bifurcation point for branch-switching. Next, we indicate that the block or band Lanczos method can be used to monitor the multiple bifurcations as well as to solve the multiple right hand sides. We also show that the unsymmetric Lanczos method can be exploited to compute the minimum eigenvalue of a nearly symmetric matrix, and therefore to detect the simple bifurcation point as well. Some preconditioning techniques are discussed. Sample numerical results are reported. Our test problems include second order semilinear elliptic eigenvalue problems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
The symmetric Lanczos method is commonly applied to reduce large‐scale symmetric linear discrete ill‐posed problems to small ones with a symmetric tridiagonal matrix. We investigate how quickly the nonnegative subdiagonal entries of this matrix decay to zero. Their fast decay to zero suggests that there is little benefit in expressing the solution of the discrete ill‐posed problems in terms of the eigenvectors of the matrix compared with using a basis of Lanczos vectors, which are cheaper to compute. Similarly, we show that the solution subspace determined by the LSQR method when applied to the solution of linear discrete ill‐posed problems with a nonsymmetric matrix often can be used instead of the solution subspace determined by the singular value decomposition without significant, if any, reduction of the quality of the computed solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Simple versions of the conjugate gradient algorithm and the Lanczos method are discussed, and some merits of the latter are described. A variant of Lanczos is proposed which maintains robust linear independence of the Lanczos vectors by keeping them in secondary storage and occasionally making use of them. The main applications are to problems in which (1) the cost of the matrix-vector product dominates other costs, (2) there is a sequence of right hand sides to be processed, and (3) the eigenvalue distribution of A is not too favorable.  相似文献   

6.
TWO ALGORITHMS FOR SYMMETRIC LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES   总被引:3,自引:0,他引:3  
1 IntroductionInmanyapplicationsweneedtosolvemultiplesystemsoflinearequationsAx(i) =b(i) ,i=1,… ,s (1)withthesamen×nrealsymmetriccoefficientmatrixA ,butsdifferentright handsidesb(i) (i=1,… ,s) .Ifalloftheright handsidesareavailablesimultaneously ,thentheseslinearsyste…  相似文献   

7.
We describe regularizing iterative methods for the solution of large ill-conditioned linear systems of equations that arise from the discretization of linear ill-posed problems. The regularization is specified by a filter function of Gaussian type. A parameter determines the amount of regularization applied. The iterative methods are based on a truncated Lanczos decomposition and the filter function is approximated by a linear combination of Lanczos polynomials. A suitable value of the regularization parameter is determined by an L-curve criterion. Computed examples that illustrate the performance of the methods are presented.  相似文献   

8.
Lanczos方法是求解大型线性方程组的常用方法.遗憾的是,在Lanczos过程中通常会发生算法中断或数值不稳定的情况.将给出求解大型对称线性方程组的收缩Lanczos方法,即DLanczos方法.新算法将采用增广子空间技术,在Lanczos过程中向Krylov子空间加入少量绝对值较小的特征值所对应的特征向量进行收缩.数值实验表明,新算法比Lanczos方法收敛速度更快,并且适合求解病态对称线性方程组.  相似文献   

9.
Rezghi and Hosseini [M. Rezghi, S.M. Hosseini, Lanczos based preconditioner for discrete ill-posed problems, Computing 88 (2010) 79–96] presented a Lanczos based preconditioner for discrete ill-posed problems. Their preconditioner is constructed by using few steps (e.g., k) of the Lanczos bidiagonalization and corresponding computed singular values and right Lanczos vectors. In this article, we propose an efficient method to set up such preconditioner. Some numerical examples are given to show the effectiveness of the method.  相似文献   

10.
Despite its usefulness in solving eigenvalue problems and linear systems of equations, the nonsymmetric Lanczos method is known to suffer from a potential breakdown problem. Previous and recent approaches for handling the Lanczos exact and near-breakdowns include, for example, the look-ahead schemes by Parlett-Taylor-Liu [23], Freund-Gutknecht-Nachtigal [9], and Brezinski-Redivo Zaglia-Sadok [4]; the combined look-ahead and restart scheme by Joubert [18]; and the low-rank modified Lanczos scheme by Huckle [17]. In this paper, we present yet another scheme based on a modified Krylov subspace approach for the solution of nonsymmetric linear systems. When a breakdown occurs, our approach seeks a modified dual Krylov subspace, which is the sum of the original subspace and a new Krylov subspaceK m (w j ,A T ) wherew j is a newstart vector (this approach has been studied by Ye [26] for eigenvalue computations). Based on this strategy, we have developed a practical algorithm for linear systems called the MLAN/QM algorithm, which also incorporates the residual quasi-minimization as proposed in [12]. We present a few convergence bounds for the method as well as numerical results to show its effectiveness.Research supported by Natural Sciences and Engineering Research Council of Canada.  相似文献   

11.
The numerical methods for solving large symmetric eigenvalue problems are considered in this paper.Based on the global Lanczos process,a global Lanczos method for solving large symmetric eigenvalue problems is presented.In order to accelerate the convergence of the F-Ritz vectors,the refined global Lanczos method is developed.Combining the implicitly restarted strategy with the deflation technique,an implicitly restarted and refined global Lanczos method for computing some eigenvalues of large symmetric matrices is proposed.Numerical results show that the proposed methods are efficient.  相似文献   

12.
This paper presents a model reduction method for large-scale linear systems that is based on a Lanczos-type approach. A variant of the nonsymmetric Lanczos method, rational Lanczos, is shown to yield a rational interpolant (multi-point Padé approximant) for the large-scale system. An exact expression for the error in the interpolant is derived. Examples are utilized to demonstrate that the rational Lanczos method provides opportunities for significant improvements in the rate of convergence over single-point Lanczos approaches.  相似文献   

13.
Algorithms to solve large sparse eigenvalue problems are considered. A new class of algorithms which is based on rational functions of the matrix is described. The Lanczos method, the Arnoldi method, the spectral transformation Lanczos method, and Rayleigh quotient iteration all are special cases, but there are also new algorithms which correspond to rational functions with several poles. In the simplest case a basis of a rational Krylov subspace is found in which the matrix eigenvalue problem is formulated as a linear matrix pencil with a pair of Hessenberg matrices.  相似文献   

14.
求解陀螺系统特征值问题的收缩二阶Lanczos方法   总被引:1,自引:1,他引:0  
孔艳花  戴华 《计算数学》2011,33(3):328-336
本文研究陀螺系统特征值问题的数值解法,利用反对称矩阵Lanczos算法,提出了求解陀螺系统特征值问题的二阶Lanczos方法.基于提出的陀螺系统特征值问题的非等价低秩收缩技术,给出了计算陀螺系统极端特征值的收缩二阶Lanczos方法.数值结果说明了算法的有效性.  相似文献   

15.
张晋  李春光  景何仿 《数学杂志》2016,36(4):767-774
本文研究了基于Lanczos双正交过程的拟极小残量法(QMR).将QMR算法中的Lanczos双正交过程用Lanczos双A-正交过程代替,利用该算法得到的近似解与最后一个基向量的线性组合来作为新的近似解,使新近似解的残差范数满足一个一维极小化问题,从而得到一种基于Lanczos双A-正交的修正的QMR算法.数值试验表明,对于某些大型线性稀疏方程组,新算法比QMR算法收敛快得多.  相似文献   

16.
Because of its vital role of the trust-region subproblem (TRS) in various applications, for example, in optimization and in ill-posed problems, there are several factorization-free algorithms for solving the large-scale sparse TRS. The truncated Lanczos approach proposed by N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint [SIAM J. Optim., 1999, 9: 504–525] is a natural extension of the classical Lanczos method for the symmetric linear system and eigenvalue problem and, indeed follows the classical Rayleigh-Ritz procedure for eigenvalue computations. It consists of 1) projecting the original TRS to the Krylov subspaces to yield smaller size TRS’s and then 2) solving the resulted TRS’s to get the approximates of the original TRS. This paper presents a posterior error bounds for both the global optimal value and the optimal solution between the original TRS and their projected counterparts. Our error bounds mainly rely on the factors from the Lanczos process as well as the data of the original TRS and, could be helpful in designing certain stopping criteria for the truncated Lanczos approach.  相似文献   

17.
The paper gives a self-contained survey of fast algorithms for solving linear systems of equations with Toeplitz or Hankel coefficient matrices. It is written in the style of a textbook. Algorithms of Levinson-type and Schur-type are discussed. Their connections with triangular factorizations, Padè recursions and Lanczos methods are demonstrated. In the case in which the matrices possess additional symmetry properties, split algorithms are designed and their relations to butterfly factorizations are developed.  相似文献   

18.
Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining a partial Lanczos bidiagonalization of the matrix of the given system of equations. This paper explores the possibility of instead computing a partial Arnoldi decomposition of the given matrix. Computed examples illustrate that this approach may require fewer matrix–vector product evaluations and, therefore, less arithmetic work. Moreover, the proposed range-restricted Arnoldi–Tikhonov regularization method does not require the adjoint matrix and, hence, is convenient to use for problems for which the adjoint is difficult to evaluate.  相似文献   

19.
In this work we study the minimization of a linear functional defined on a set of approximate solutions of a discrete ill-posed problem. The primary application of interest is the computation of confidence intervals for components of the solution of such a problem. We exploit the technique introduced by Eldén in 1990, utilizing a parametric programming reformulation involving the solution of a sequence of quadratically constrained least squares problems. Our iterative method, which uses the connection between Lanczos bidiagonalization and Gauss-type quadrature rules to bound certain matrix functionals, is well-suited for large-scale problems, and offers a significant reduction in matrix-vector product evaluations relative to available methods.  相似文献   

20.
Tikhonov Regularization of Large Linear Problems   总被引:1,自引:0,他引:1  
Many numerical methods for the solution of linear ill-posed problems apply Tikhonov regularization. This paper presents a new numerical method, based on Lanczos bidiagonalization and Gauss quadrature, for Tikhonov regularization of large-scale problems. An estimate of the norm of the error in the data is assumed to be available. This allows the value of the regularization parameter to be determined by the discrepancy principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号