首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we develop the multilevel augmentation method for solving nonlinear operator equations of the second kind and apply it to solving the one-dimensional sine-Gordon equation. We first give a general setting of the multilevel augmentation method for solving the second kind nonlinear operator equations and prove that the multilevel augmentation method preserves the optimal convergence order of the projection method while reducing computational cost significantly. Then we describe the semi-discrete scheme and the fully-discrete scheme based on multiscale methods for solving the sine-Gordon equation, and apply the multilevel augmentation method to solving the discrete equation. A complete analysis for convergence order is proposed. Finally numerical experiments are presented to confirm the theoretical results and illustrate the efficiency of the method.  相似文献   

2.
This paper continues the theme of the recent work [Z. Chen and Y. Xu, The Petrov–Galerkin and iterated Petrov–Galerkin methods for second kind integral equations, SIAM J. Numer. Anal., to appear] and further develops the Petrov–Galerkin method for Fredholm integral equations of the second kind. Specifically, we study wavelet Petrov–Galerkin schemes based on discontinuous orthogonal multiwavelets and prove that the condition number of the coefficient matrix for the linear system obtained from the wavelet Petrov–Galerkin scheme is bounded. In addition, we propose a truncation strategy which forms a basis for fast wavelet algorithms and analyze the order of convergence and computational complexity of these algorithms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
In this paper, we develop a discrete wavelet Petrov–Galerkin method for integral equations of the second kind with weakly singular kernels suitable for solving boundary integral equations. A compression strategy for the design of a fast algorithm is suggested. Estimates for the rate of convergence and computational complexity of the method are provided.  相似文献   

4.
1.IntroductionInthispaPer,westudynumericalsolutionstointegralequationsofthesecondkinddefinedonthehalfline.Morepreciselyweconsidertheequationy(t)+Iooa(t,s)y(s)ds=g(t),OS相似文献   

5.
Boundary value problems of the third kind are converted into boundary integral equations of the second kind with periodic logarithmic kernels by using Green's formulas. For solving the induced boundary integral equations, a Nyström scheme and its extrapolation method are derived for periodic Fredholm integral equations of the second kind with logarithmic singularity. Asymptotic expansions for the approximate solutions obtained by the Nyström scheme are developed to analyze the extrapolation method. Some computational aspects of the methods are considered, and two numerical examples are given to illustrate the acceleration of convergence.

  相似文献   


6.
In this paper is discussed solving an elliptic equation and a boundary integral equation of the second kind by representation of compactly supported wavelets. By using wavelet bases and the Galerkin method for these equations, we obtain a stiff sparse matrix that can be ill-conditioned. Therefore, we have to introduce an operator which maps every sparse matrix to a circulant sparse matrix. This class of circulant matrices is a class of preconditioners in a Banach space. Based on having some properties in the spectral theory for this class of matrices, we conclude that the circulant matrices are a good class of preconditioners for solving these equations. We called them circulant wavelet preconditioners (CWP). Therefore, a class of algorithms is introduced for rapid numerical application.  相似文献   

7.
王洋  伍渝江  付军 《计算数学》2014,36(3):291-302
修正的Hermite/反Hermite分裂(MHSS)迭代方法是一类求解大型稀疏复对称线性代数方程组的无条件收敛的迭代算法.基于非线性代数方程组的特殊结构和性质,我们选取Picard迭代为外迭代方法,MHSS迭代作为内迭代方法,构造了求解大型稀疏弱非线性代数方程组的Picard-MHSS和非线性MHSS-like方法.这两类方法的优点是不需要在每次迭代时均精确计算和存储Jacobi矩阵,仅需要在迭代过程中求解两个常系数实对称正定子线性方程组.除此之外,在一定条件下,给出了两类方法的局部收敛性定理.数值结果证明了这两类方法是可行、有效和稳健的.  相似文献   

8.
In this work, we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels. Particularly, we consider the case when the underlying solutions are sufficiently smooth. In this case, the proposed method leads to a fully discrete linear system. We show that the fully discrete integral operator is stable in both infinite and weighted square norms. Furthermore, we establish that the approximate solution arrives at an optimal convergence order under the two norms. Finally, we give some numerical examples, which confirm the theoretical prediction of the exponential rate of convergence.  相似文献   

9.
求解一类具有Hibert核的奇异积分方程的小波方法   总被引:1,自引:0,他引:1  
1 引  言近年来,用小波方法数值求解积分方程越来越引起人们的注意.文献[1]提出的算法可将一类积分算子所对应的矩阵稀疏化,为小波方法快速求解积分方程开辟了一条新的道路这方面的研究不仅可以深入发展小波理论和应用算法,深入发展小波方法的功效,而且对边界元方法有重要的指导意义.然而研究稳健快速的数值方法,一直是这方面研究的难点问题.本文考虑带Hilbert核的奇异积分方程q(y)=12π∫2π0f(x)ctg12(x-y)dx,y∈[0,2π],(1.1)的小波数值解法;其中f(x)∈H2π,q(y)∈H2π是以2π为周期的Holder类函数;q(y)已知,f(x)待求解;(1.1)式右…  相似文献   

10.
Summary Multigrid methods are applied for solving algebraic systems of equations that occur to the numerical treatment of boundary integral equations of the first and second kind. These methods, originally formulated for partial differential equations of elliptic type, combine relaxation schemes and coarse grid corrections. The choice of the relaxation scheme is found to be essential to attain a fast convergent iterative process. Theoretical investigations show that the presented relaxation scheme provides a multigrid algorithm of which the rate of convergence increases with the dimension of the finest grid. This is illustrated for the calculation of potential flow around an aerofoil.  相似文献   

11.
Jure Ravnik  Leopold Škerget 《PAMM》2014,14(1):841-842
The boundary-domain integral method uses Green's functions to write integral representations of partial differential equations. Since Green's functions are non-local, the systems of linear equations arising from the discretization of integral representations are fully populated. Several algorithms have been proposed, which yield a data-sparse approximation of these systems, such as the fast multipole method, adaptive cross approximation and among others, wavelet compression. In the framework of solving the Navier-Stokes equations in velocity-vorticity form one may utilize the boundary-domain integral method for the solution of the kinematics equation to calculate the boundary vorticity values. Since the kinematics equation is a Poisson type equation, usually its integral representation is written with the Green's function for the Laplace operator. In this work, we introduce a false time into the equation and parabolize its nature. Thus, a time-dependent Green's function may be used. This provides a new parameter, the time step, which can be set to control the Green's function. The time-dependent Green's function is a global function, but by carefully choosing the time step, its behaviour is almost local. This makes it a good candidate for wavelet compression, yielding much better compression ratios at a given accuracy than when using the Green's function for the Laplace operator. However, as false time is introduced, several time steps must be solved in order to reach a converged solution. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The application of high order iterative methods for solving nonlinear integral equations is not usual in mathematics. But, in this paper, we show that high order iterative methods can be used to solve a special case of nonlinear integral equations of Fredholm type and second kind. In particular, those that have the property of the second derivative of the corresponding operator have associated with them a vector of diagonal matrices once a process of discretization has been done.  相似文献   

13.
The application of high order iterative methods for solving nonlinear integral equations is not usual in mathematics. But, in this paper, we show that high order iterative methods can be used to solve a special case of nonlinear integral equations of Fredholm type and second kind. In particular, those that have the property of the second derivative of the corresponding operator have associated with them a vector of diagonal matrices once a process of discretization has been done.  相似文献   

14.
本文先把正则化后的第二类积分方程分解为等价的一对不含积分算子K*K、仅含积分算子K以及K*的方程组, 再用截断投影方法离散方程组, 采用多层迭代算法求解截断后的等价方程组, 并给出了后验参数的选择方法, 确保近似解达到最优.与传统全投影方法相比, 减少了积分计算的维数, 保持了最优收敛率. 最后, 算例说明了算法的有效性.  相似文献   

15.
We are concerned with the numerical treatment of boundary integral equations by the adaptive wavelet boundary element method. In particular, we consider the second kind Fredholm integral equation for the double layer potential operator on patchwise smooth manifolds contained in ?3. The corresponding operator equations are treated by adaptive implementations that are in complete accordance with the underlying theory. The numerical experiments demonstrate that adaptive methods really pay off in this setting. The observed convergence rates fit together very well with the theoretical predictions based on the Besov regularity of the exact solution.  相似文献   

16.
Matrices resulting from wavelet transforms have a special “shadow” block structure, that is, their small upper left blocks contain their lower frequency information. Numerical solutions of linear systems with such matrices require special care. We propose shadow block iterative methods for solving linear systems of this type. Convergence analysis for these algorithms are presented. We apply the algorithms to three applications: linear systems arising in the classical regularization with a single parameter for the signal de-blurring problem, multilevel regularization with multiple parameters for the same problem and the Galerkin method of solving differential equations. We also demonstrate the efficiency of these algorithms by numerical examples in these applications.  相似文献   

17.
We propose an efficient implicit method to evaluate European and American options when the underlying asset follows an infinite activity Lévy model. Since the Lévy measure of the infinite activity model has the singularity at the origin, we approximate infinitely many small jumps by samples of a diffusion. The proposed methods to solve partial integro–differential equations for European options and linear complementarity problems for American options via an operator splitting method involve solving linear systems with tridiagonal matrices and so can significantly reduce the computations associated with the discrete integral operators. The numerical experiments verify that the proposed method has the second-order convergence rate under an infinite activity Lévy model.  相似文献   

18.
Abstract

We consider systems of nonlinear difference equations arising when convergence analysis of an iterative method for solving operator equations in Banach spaces is carried out via Kantorovich's technique of majorization. The main challenge in this context is to determine the convergence domain of the corresponding majorant generator. As it turns out, dealing with this task leads to solution of functional equations of a certain kind. After considering several examples, we formulate two generic models and develop an approach to their solution.  相似文献   

19.
In this paper, we consider iterative algorithms of Uzawa type for solving linear nonsymmetric saddle point problems. Specifically, we consider systems, written as usual in block form, where the upper left block is an invertible linear operator with positive definite symmetric part. Such saddle point problems arise, for example, in certain finite element and finite difference discretizations of Navier-Stokes equations, Oseen equations, and mixed finite element discretization of second order convection-diffusion problems. We consider two algorithms, each of which utilizes a preconditioner for the operator in the upper left block. Convergence results for the algorithms are established in appropriate norms. The convergence of one of the algorithms is shown assuming only that the preconditioner is spectrally equivalent to the inverse of the symmetric part of the operator. The other algorithm is shown to converge provided that the preconditioner is a sufficiently accurate approximation of the inverse of the upper left block. Applications to the solution of steady-state Navier-Stokes equations are discussed, and, finally, the results of numerical experiments involving the algorithms are presented.

  相似文献   


20.
In this paper, the schemes of the alternating triangular method are set out in the class of splitting methods used for the approximate solution of Cauchy problems for evolutionary problems. These schemes are based on splitting the problem operator into two operators that are conjugate transposes of each other. Economical schemes for the numerical solution of boundary value problems for parabolic equations are designed on the basis of an explicit-implicit splitting of the problem operator. The alternating triangular method is also of interest for the construction of numerical algorithms that solve boundary value problems for systems of partial differential equations and vector systems. The conventional schemes of the alternating triangular method used for first-order evolutionary equations are two-level ones. The approximation properties of such splitting methods can be improved by transiting to three-level schemes. Their construction is based on a general principle for improving the properties of difference schemes, namely, on the regularization principle of A.A. Samarskii. The analysis conducted in this paper is based on the general stability (or correctness) theory of operator-difference schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号