首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A compressible Stokes problem is analyzed in a convex polygon D. The goal of this paper is to sort out a singularity of the pressure function at the corner and to establish the corresponding regularity result of the resulted remainder part of the solution. For this a solution formula is derived and the singular function of the Stokes problem is considered. It is seen that the lowest order of the regularity of the system is the same as that of the (incompressible) Stokes one.  相似文献   

2.
Our concern is with existence and regularity of the stationary compressible viscous Navier-Stokes equations with no-slip condition on convex polygonal domains. Note that [u,p]=[0,c], c a constant, is the eigenpair for the singular value λ=1 of the Stokes problem on the convex sector. It is shown that, except the pair [0,c], the leading order of the corner singularities for the nonlinear equations is the same as that of the Stokes problem. We split the leading corner singularity from the solution and show an increased regularity for the remainder. As a consequence the pressure solution changes the sign at the convex corner and its derivatives blow up.  相似文献   

3.
We study the initial-boundary value problem resulting from the linearization of the plasma-vacuum interface problem in ideal compressible magnetohydrodynamics (MHD). We suppose that the plasma and the vacuum regions are unbounded domains and the plasma density does not go to zero continuously, but jumps. For the basic state upon which we perform linearization we find two cases of well-posedness of the “frozen” coefficient problem: the “gas dynamical” case and the “purely MHD” case. In the “gas dynamical” case we assume that the jump of the normal derivative of the total pressure is always negative. In the “purely MHD” case this condition can be violated but the plasma and the vacuum magnetic fields are assumed to be non-zero and non-parallel to each other everywhere on the interface. For this case we prove a basic a priori estimate in the anisotropic weighted Sobolev space for the variable coefficient problem.  相似文献   

4.
The paper is devoted to investigating long time behavior of smooth small data solutions to 3-D quasilinear wave equations outside of compact convex obstacles with Neumann boundary conditions. Concretely speaking, when the surface of a 3-D compact convex obstacle is smooth and the quasilinear wave equation fulfills the null condition, we prove that the smooth small data solution exists globally provided that the Neumann boundary condition on the exterior domain is given. One of the main ingredients in the current paper is the establishment of local energy decay estimates of the solution itself. As an application of the main result, the global stability to 3-D static compressible Chaplygin gases in exterior domain is shown under the initial irrotational perturbation with small amplitude.  相似文献   

5.
Barotropic flows of one-dimensional compressible Bingham fluids are considered. Long-time behavior of the corresponding initial-boundary problem is investigated. The uniform upper and lower bounds for the density and a decay of the kinetic energy are established. We admit a class of mass forces not considered for similar problems to Newtonian fluids. Under additional assumptions on the mass force, we achieve strong estimates for the solution (uniformly in time) and decays of the velocity and its derivatives. Received: April 14, 2004; revised: November 22, 2004  相似文献   

6.
We present new algorithms for weak approximation of stochastic differential equations driven by pure jump Lévy processes. The method uses adaptive non-uniform discretization based on the times of large jumps of the driving process. To approximate the solution between these times we replace the small jumps with a Brownian motion. Our technique avoids the simulation of the increments of the Lévy process, and in many cases achieves better convergence rates than the traditional Euler scheme with equal time steps. To illustrate the method, we discuss an application to option pricing in the Libor market model with jumps.  相似文献   

7.
8.
The Navier-Stokes equations for a compressible barotropic fluid in 1D with zero velocity boundary conditions are considered. We study the case of large initial data in H1 as well as the mass force such that the stationary density is uniquely determined but admits vacua. Missing uniform lower bound for the density is compensated by a careful modification of the construction procedure for a Lyapunov functional known for the case of solutions which are globally away from zero [I. Straškraba, A.A. Zlotnik, On a decay rate for 1D-viscous compressible barotropic fluid equations, J. Evol. Equ. 2 (2002) 69-96]. An immediate consequence of this construction is a decay rate estimate for this highly singular problem. The results are proved in the Eulerian coordinates for a large class of increasing state functions including p(ρ)=aργ with any γ>0 (a>0 a constant).  相似文献   

9.
This paper deals with the uniform boundedness (as well as the existence) and large time behavior of the weak entropy solutions to a kind of compressible Euler equation with dissipation effect. The existence and uniform boundedness in time of weak solutions are proved by using the Lax-Friedrichs scheme and compensate compactness. Time asymptotically, the density is showed to satisfy a kind of nonlinear Fokker-Planck equation and the momentum obeys to the Darcy’s law. As a by product, the exponentially decay rate is obtained.  相似文献   

10.
The compactness of weak solutions to the magnetohydrodynamic equations for the viscous, compressible, heat conducting fluids is considered in both the three-dimensional space R3 and the three-dimensional periodic domains. The viscosities, the heat conductivity as well as the magnetic coefficient are allowed to depend on the density, and may vanish on the vacuum. This paper provides a different idea from [X. Hu, D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys. (2008), in press] to show the compactness of solutions of viscous, compressible, heat conducting magnetohydrodynamic flows, derives a new entropy identity, and shows that the limit of a sequence of weak solutions is still a weak solution to the compressible magnetohydrodynamic equations.  相似文献   

11.
In this paper, we investigate a class of nonlinear damped stochastic hyperbolic equations with jumps. The jump component considered here is described as a Poisson point process. This paper is divided into two parts. The first part deals with existence and uniqueness of global weak and strong solutions to this type of equations, based on the energy approach. The second part devotes to the existence and support of invariant measures corresponding to the weak solution semi-group, based on Markov property of the solution.  相似文献   

12.
In the present paper, we investigate the large-time behavior of the solution to an initial-boundary value problem for the isentropic compressible Navier-Stokes equations in the Eulerian coordinate in the half space. This is one of the series of papers by the authors on the stability of nonlinear waves for the outflow problem of the compressible Navier-Stokes equations. Some suitable assumptions are made to guarantee that the time-asymptotic state is a nonlinear wave which is the superposition of a stationary solution and a rarefaction wave. Employing the L2-energy method and making use of the techniques from the paper [S. Kawashima, Y. Nikkuni, Stability of rarefaction waves for the discrete Boltzmann equations, Adv. Math. Sci. Appl. 12 (1) (2002) 327-353], we prove that this nonlinear wave is nonlinearly stable under a small perturbation. The complexity of nonlinear wave leads to many complicated terms in the course of establishing the a priori estimates, however those terms are of two basic types, and the terms of each type are “good” and can be evaluated suitably by using the decay (in both time and space variables) estimates of each component of nonlinear wave.  相似文献   

13.
We prove the global existence of solutions of the Navier‐Stokes equations of compressible, barotropic flow in two space dimensions which exhibit convecting singularity curves. The fluid density and velocity gradient have jump discontinuities across these curves, exactly as predicted by the Rankine‐Hugoniot conditions, and these jump discontinuities decay exponentially in time, more rapidly for smaller viscosities. The singularity curves remain C1+α despite the fact that the velocity fields which convect them are not continuously differentiable. © 2002 Wiley Periodicals, Inc.  相似文献   

14.
We study the Cauchy problem for multi-dimensional compressible radiation hydrodynamics equations with vacuum. First, we present some sufficient conditions on the blow-up of smooth solutions in multi-dimensional space. Then, we obtain the invariance of the support of density for the smooth solutions with compactly supported initial mass density by the property of the system under the vacuum state. Based on the above-mentioned results, we prove that we cannot get a global classical solution, no matter how small the initial data are, as long as the initial mass density is of compact support. Finally, we will see that some of the results that we obtained are still valid for the isentropic flows with degenerate viscosity coefficients as well as for one-dimensional case.  相似文献   

15.
We consider systems of Timoshenko type in a one-dimensional bounded domain. The physical system is damped by a single feedback force, only in the equation for the rotation angle, no direct damping is applied on the equation for the transverse displacement of the beam. Moreover the damping is assumed to be nonlinear with no growth assumption at the origin, which allows very weak damping. We establish a general semi-explicit formula for the decay rate of the energy at infinity in the case of the same speed of propagation in the two equations of the system. We prove polynomial decay in the case of different speed of propagation for both linear and nonlinear globally Lipschitz feedbacks.   相似文献   

16.
We study a large time behavior of a solution to the initial boundary value problem for an isentropic and compressible viscous fluid in a one-dimensional half space. The unique existence and the asymptotic stability of a stationary solution are proved by S. Kawashima, S. Nishibata and P. Zhu for an outflow problem where the fluid blows out through the boundary. The main concern of the present paper is to investigate a convergence rate of a solution toward the stationary solution. For the supersonic flow at spatial infinity, we obtain an algebraic or an exponential decay rate. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in the spatial asymptotic point, the solution converges to the corresponding stationary solution with the same rate in time as time tends to infinity. An algebraic convergence rate is also obtained for the transonic flow. These results are proved by the weighted energy method.  相似文献   

17.
We are concerned with singularities and regularities of solutions for the Navier-Stokes system of incompressible flows on a polygonal domain with a concave vertex. We subtract the corner singularities by the Stokes operator from the solution velocity and pressure functions of the system. It is shown that the stress intensity factors are functions of time variable, belong to a fractional Sobolev space on the time interval and can be expressed in terms of given data. An increased regularity for the remainder is obtained.  相似文献   

18.
We establish the existence of solutions for a class of quasilinear degenerate elliptic equations. The equations in this class satisfy a structure condition which provides ellipticity in the interior of the domain, and degeneracy only on the boundary. Equations of transonic gas dynamics, for example, satisfy this property in the region of subsonic flow and are degenerate across the sonic surface. We prove that the solution is smooth in the interior of the domain but may exhibit singular behavior at the degenerate boundary. The maximal rate of blow-up at the degenerate boundary is bounded by the “degree of degeneracy” in the principal coefficients of the quasilinear elliptic operator. Our methods and results apply to the problems recently studied by several authors which include the unsteady transonic small disturbance equation, the pressure-gradient equations of the compressible Euler equations, and the singular quasilinear anisotropic elliptic problems, and extend to the class of equations which satisfy the structure condition, such as the shallow water equation, compressible isentropic two-dimensional Euler equations, and general two-dimensional nonlinear wave equations. Our study provides a general framework to analyze degenerate elliptic problems arising in the self-similar reduction of a broad class of two-dimensional Cauchy problems.  相似文献   

19.
Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk.  相似文献   

20.
In this paper, we develop a viscosity method for homogenization of Nonlinear Parabolic Equations constrained by highly oscillating obstacles or Dirichlet data in perforated domains. The Dirichlet data on the perforated domain can be considered as a constraint or an obstacle. Homogenization of nonlinear eigen value problems has been also considered to control the degeneracy of the porous medium equation in perforated domains. For the simplicity, we consider obstacles that consist of cylindrical columns distributed periodically and perforated domains with punctured balls. If the decay rate of the capacity of columns or the capacity of punctured ball is too high or too small, the limit of u? will converge to trivial solutions. The critical decay rates of having nontrivial solution are obtained with the construction of barriers. We also show the limit of u? satisfies a homogenized equation with a term showing the effect of the highly oscillating obstacles or perforated domain in viscosity sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号