首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this article, the Exp‐function method is applied to nonlinear Burgers equation and special fifth‐order partial differential equation. Using this method, we obtain exact solutions for these equations. The method is straightforward and concise, and its applications are promising. This method can be used as an alternative to obtain analytical and approximate solutions of different types of nonlinear differential equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
We consider the generalized integrable fifth order nonlinear Korteweg-de Vries (fKdV) equation. The extended Tanh method has been used rigorously, by computational program MAPLE, for solving this fifth order nonlinear partial differential equation. The general solutions of the fKdV equation are formed considering an ansatz of the solution in terms of tanh. Then, in particular, some exact solutions are found for the two fifth order KdV-type equations given by the Caudrey-Dodd-Gibbon equation and the another fifth order equation. The obtained solutions include solitary wave solution for both the two equations.  相似文献   

4.
本文通过反例指出了最近某文献中几个振动定理存在的错误.  相似文献   

5.
In this article, up to tenth‐order finite difference schemes are proposed to solve the generalized Burgers–Huxley equation. The schemes based on high‐order differences are presented using Taylor series expansion. To establish the numerical solutions of the corresponding equation, the high‐order schemes in space and a fourth‐order Runge‐Kutta scheme in time have been combined. Numerical experiments have been conducted to demonstrate the high‐order accuracy of the current algorithms with relatively minimal computational effort. The results showed that use of the present approaches in the simulation is very applicable for the solution of the generalized Burgers–Huxley equation. The current results are also seen to be more accurate than some results given in the literature. The proposed algorithms are seen to be very good alternatives to existing approaches for such physical applications. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1313‐1326, 2011  相似文献   

6.
In this article, we analyze a Crank‐Nicolson‐type finite difference scheme for the nonlinear evolutionary Cahn‐Hilliard equation. We prove existence, uniqueness and convergence of the difference solution. An iterative algorithm for the difference scheme is given and its convergence is proved. A linearized difference scheme is presented, which is also second‐order convergent. Finally a new difference method possess a Lyapunov function is presented. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 437–455, 2007  相似文献   

7.
In this article, numerical solutions of the generalized Burgers–Fisher equation are obtained using a compact finite difference method with minimal computational effort. To verify this, a combination of a sixth‐order compact finite difference scheme in space and a low‐storage third‐order total variation diminishing Runge–Kutta scheme in time have been used. The computed results with the use of this technique have been compared with the exact solution to show the accuracy of it. The approximate solutions to the equation have been computed without transforming the equation and without using linearization. Comparisons indicate that there is a very good agreement between the numerical solutions and the exact solutions in terms of accuracy. The present method is seen to be a very good alternative to some existing techniques for realistic problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

8.
In this study, new high‐order backward semi‐Lagrangian methods are developed to solve nonlinear advection–diffusion type problems, which are realized using high‐order characteristic‐tracking strategies. The proposed characteristic‐tracking strategies are second‐order L‐stable and third‐order L(α)‐stable methods, which are based on a classical implicit multistep method combined with a error‐correction method. We also use backward differentiation formulas and the fourth‐order finite‐difference scheme for diffusion problem discretization in the temporal and spatial domains, respectively. To demonstrate the adaptability and efficiency of these time‐discretization strategies, we apply these methods to nonlinear advection–diffusion type problems such as the viscous Burgers' equation. Through simulations, not only the temporal and spatial accuracies are numerically evaluated but also the proposed methods are shown to be superior to the compared existing characteristic‐tracking methods under the same rates of convergence in terms of accuracy and efficiency. Finally, we have shown that the proposed method well preserves the energy and mass when the viscosity coefficient becomes zero.  相似文献   

9.
The aim of this paper is to propose a multigrid method to obtain the numerical solution of the one‐dimensional nonlinear sine‐Gordon equation. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a compact finite difference scheme of fourth‐order for discretizing the spatial derivative and the standard second‐order central finite difference method for the time derivative. The proposed method uses the Richardson extrapolation method in time variable. The obtained system has been solved by V‐cycle multigrid (VMG) method, where the VMG method is used for solving the large sparse linear systems. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional sine‐Gordon equation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the problem of a nonlinear beam equation involving an integral term of the deformation energy, which is unknown before the solution, under different boundary conditions with simply supported, 2‐end fixed, and cantilevered is investigated. We transform the governing equation into an integral equation and then solve it by using the sinusoidal functions, which are chosen both as the test functions and the bases of numerical solution. Because of the orthogonality of the sinusoidal functions, we can find the expansion coefficients of the numerical solution that are given in closed form by using the Drazin inversion formula. Furthermore, we introduce the concept of fourth‐order and fifth‐order boundary functions in the solution bases, which can greatly raise the accuracy over 4 orders than that using the partial boundary functions. The iterative algorithms converge very fast to find the highly accurate numerical solutions of the nonlinear beam equation, which are confirmed by 6 numerical examples.  相似文献   

11.
本文中我们考虑一类二阶非线性常微分方程的边值问题的迎风差分格式.我们运用奇异摄动方法构造了该迎风差分方程解的渐近近似,并利用指数二分性理论证明了有一个低阶方程其解是该迎风方程式的在边界外的一个良好近似.我们还构造了校正项,使校正项与低阶方程的解之和是一个渐近近似.最后一些数值例子用于显示本文方法的应用.  相似文献   

12.
本文针对二维Poisson方程五点和九点差分格式,导出了求解这些格式的SOR方法中最优松弛因子与区域剖分数的有理拟合公式,给出了Jacobi结合Chebyshev加速方法中Jacobi迭代矩阵谱半径的有理拟合公式.实际计算表明这些公式计算效果良好.  相似文献   

13.
A positivity‐preserving nonstandard finite difference scheme is constructed to solve an initial‐boundary value problem involving heat transfer described by the Maxwell‐Cattaneo thermal conduction law, i.e., a modified form of the classical Fourier flux relation. The resulting heat transport equation is the damped wave equation, a PDE of hyperbolic type. In addition, exact analytical solutions are given, special cases are mentioned, and it is noted that the positivity condition is equivalent to the usual linear stability criteria. Finally, solution profiles are plotted and possible extensions to a delayed diffusion equation and nonlinear reaction‐diffusion systems are discussed. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004.  相似文献   

14.
In this paper, we present an application of some known generalizations of the Exp‐function method to the fifth‐order Burgers and to the seventh‐order Korteweg de Vries equations for the first time. The two examples show that the Exp‐function method can be an effective alternative tool for explicitly constructing rational and multi‐wave solutions with arbitrary parameters to higher order nonlinear evolution equations. Being straightforward and concise, as pointed out previously, this procedure does not require the bilinear representation of the equation considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The Klein‐Kramers equation describes position and velocity distribution of Langevin dynamics, the diffusion equation and Fokker‐Planck equation are its special cases for characterizing position distribution and velocity distribution, respectively. Incorporating the mechanisms of Lévy flights into the Klein‐Kramers formalism leads to the Lévy fractional Klein‐Kramers equation, which can effectively describe Lévy flights in the presence of an external force field in the phase space. For numerically solving the Lévy fractional Klein‐Kramers equation, this article presents the explicit and implicit finite difference schemes. The discrete maximum principle is generalized, using this result the detailed stability and convergence analyses of the schemes are given. And the extrapolation and some other possible techniques for improving the convergent rate or making the schemes efficient in more general cases are also discussed. The extensive numerical experiments are performed to confirm the effectiveness of the numerical schemes or simulate the superdiffusion processes. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

16.
In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence and on the existence of homoclinic solutions. Our results not only solve an open problem proposed by Pankov, but also greatly improve some existing ones even for some special cases.  相似文献   

17.
This article develops a new two‐level three‐point implicit finite difference scheme of order 2 in time and 4 in space based on arithmetic average discretization for the solution of nonlinear parabolic equation ε uxx = f(x, t, u, ux, ut), 0 < x < 1, t > 0 subject to appropriate initial and Dirichlet boundary conditions, where ε > 0 is a small positive constant. We also propose a new explicit difference scheme of order 2 in time and 4 in space for the estimates of (?u/?x). The main objective is the proposed formulas are directly applicable to both singular and nonsingular problems. We do not require any fictitious points outside the solution region and any special technique to handle the singular problems. Stability analysis of a model problem is discussed. Numerical results are provided to validate the usefulness of the proposed formulas. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

18.
本文讨论具有抛物边界层的半线性抛物型方程奇异摄动问题的数值解法,在非均匀网格上构造了两层非线性差分格式,证明了差分格式是一致收敛的,给出了一些数值例子.  相似文献   

19.
In this article, we introduce a high‐order accurate method for solving one‐space dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivative of linear hyperbolic equation and collocation method for the time component. The main property of this method additional to its high‐order accuracy due to the fourth order discretization of spatial derivative, is its unconditionally stability. In this technique the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method produce a very efficient method for solving the one‐space‐dimensional linear hyperbolic equation. We compare the numerical results of this paper with numerical results of (Mohanty, 3 .© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

20.
The Camassa–Holm (CH) system is a strong nonlinear third‐order evolution equation. So far, the numerical methods for solving this problem are only a few. This article deals with the finite difference solution to the CH equation. A three‐level linearized finite difference scheme is derived. The scheme is proved to be conservative, uniquely solvable, and conditionally second‐order convergent in both time and space in the discrete L norm. Several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 451–471, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号