首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.

We introduce a new class of structured symmetric matrices by extending the notion of perfect elimination ordering from graphs to weighted graphs or matrices. This offers a common framework capturing common vertex elimination orderings of monotone families of chordal graphs, Robinsonian matrices and ultrametrics. We give a structural characterization for matrices that admit perfect elimination orderings in terms of forbidden substructures generalizing chordless cycles in graphs.

  相似文献   

2.
In this paper, we study toric ideals associated with multichains of posets. It is shown that the comparability graph of a poset is chordal if and only if there exists a quadratic Gröbner basis of the toric ideal of the poset. Strong perfect elimination orderings of strongly chordal graphs play an important role.  相似文献   

3.
This paper studies properties of perfect elimination orderings in chordal graphs. Specific connections to convex subsets and quasiconcave functions in a graph are discussed. Several new schemes for generating all perfect elimination orderings are investigated and related to existing schemes.  相似文献   

4.
弦图扩张与最优排序   总被引:4,自引:0,他引:4  
弦图是一类特殊的完美图,以具有完美消去顺序为特征.由弦图扩张引出一系列序列性组合优化问题,沟通了图论、数值分析及最优排序等领域的若干研究课题.本文将论述我们的一些观点和研究结果.  相似文献   

5.
The aim of this article is to link Schubert varieties in the flag manifold with hyperplane arrangements. For a permutation, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only if the Schubert variety is smooth. We give an explicit combinatorial formula for the Poincaré polynomial. Our main technical tools are chordal graphs and perfect elimination orderings.  相似文献   

6.
The elimination tree plays an important role in many aspects of sparse matrix factorization. The height of the elimination tree presents a rough, but usually effective, measure of the time needed to perform parallel elimination. Finding orderings that produce low elimination is therefore important. As the problem of finding minimum height elimination tree orderings is NP-hard, it is interesting to concentrate on limited classes of graphs and find minimum height elimination trees for these efficiently. In this paper, we use clique trees to find an efficient algorithm for interval graphs which make an important subclass of chordal graphs. We first illustrate this method through an algorithm that finds minimum height elimination for chordal graphs. This algorithm, although of exponential time complexity, is conceptionally simple and leads to a polynomial-time algorithm for finding minimum height elimination trees for interval graphs.This work was supported by grants from the Norwegian Research Council.  相似文献   

7.
We define two types of bipartite graphs, chordal bipartite graphs and perfect elimination bipartite graphs, and prove theorems analogous to those of Dirac and Rose for chordal graphs (rigid circuit graphs, triangulated graphs). Our results are applicable to Gaussian elimination on sparse matrices where a sequence of pivots preserving zeros is sought. Our work removes the constraint imposed by Haskins and Rose that pivots must be along the main diagonal.  相似文献   

8.
The class ofdoubly chordal graphs is a subclass ofchordal graphs and a superclass ofstrongly chordal graphs, which arise in so many application areas. Many optimization problems like domination and Steiner tree are NP-complete on chordal graphs but can be solved in polynomial time on doubly chordal graphs. The central to designing efficient algorithms for doulby chordal graphs is the concept of(canonical) doubly perfect elimination orderings. We present linear time algorithms to compute a(canonical) doubly perfect elimination ordering of adoubly chordal graph.  相似文献   

9.
The question of generalizing results involving chordal graphs to similar concepts for chordal bipartite graphs is addressed. First, it is found that the removal of a bisimplicial edge from a chordal bipartite graph produces a chordal bipartite graph. As consequence, occurance of arithmetic zeros will not terminate perfect Gaussian elimination on sparse matrices having associated a chordal bipartite graph. Next, a property concerning minimal edge separators is presented. Finally, it is shown that, to any vertex of a chordal bipartite graph an edge may be added such that the chordality is maintained.  相似文献   

10.
Many optimization problems like domination and Steiner tree are NP-complete onchordal graphs but can be solved in polynomial time ondoubly chordal graphs. Investigating properties of doubly chordal graphs probably help to design efficient algorithms for the graphs. We present some characterizations of doubly chordal graphs, which are based on clique matrices and neighborhood matrices. It is also mentioned how adoubly perfect elimination ordering of a doubly chordal graph can be computed from the results.  相似文献   

11.
An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. Asteroidal triples play a central role in a classical characterization of interval graphs by Lekkerkerker and Boland. Their result says that a chordal graph is an interval graph if and only if it does not contain an asteroidal triple. In this paper, we prove an analogous theorem for directed path graphs which are the intersection graphs of directed paths in a directed tree. For this purpose, we introduce the notion of a special connection. Two non‐adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex‐disjoint chordless paths satisfying certain conditions. A special asteroidal triple is an asteroidal triple such that each pair is linked by a special connection. We prove that a chordal graph is a directed path graph if and only if it does not contain a special asteroidal triple. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:103‐112, 2011  相似文献   

12.
The partition of graphs into “nice” subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same‐size stars, a problem known to be NP‐complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial‐time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP‐complete cases, for example, on grid graphs and chordal graphs.  相似文献   

13.
Packing a maximum number of disjoint triangles into a given graph G is NP-hard, even for most classes of structured graphs. In contrast, we show that packing a maximum number of independent (that is, disjoint and nonadjacent) triangles is polynomial-time solvable for many classes of structured graphs, including weakly chordal graphs, asteroidal triple-free graphs, polygon-circle graphs, and interval-filament graphs. These classes contain other well-known classes such as chordal graphs, cocomparability graphs, circle graphs, circular-arc graphs, and outerplanar graphs. Our results apply more generally to independent packings by members of any family of connected graphs. Research of both authors is supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

14.
A graph is H‐free if it has no induced subgraph isomorphic to H. Brandstädt, Engelfriet, Le, and Lozin proved that the class of chordal graphs with independence number at most 3 has unbounded clique‐width. Brandstädt, Le, and Mosca erroneously claimed that the gem and co‐gem are the only two 1‐vertex P4‐extensions H for which the class of H‐free chordal graphs has bounded clique‐width. In fact we prove that bull‐free chordal and co‐chair‐free chordal graphs have clique‐width at most 3 and 4, respectively. In particular, we find four new classes of H‐free chordal graphs of bounded clique‐width. Our main result, obtained by combining new and known results, provides a classification of all but two stubborn cases, that is, with two potential exceptions we determine all graphs H for which the class of H‐free chordal graphs has bounded clique‐width. We illustrate the usefulness of this classification for classifying other types of graph classes by proving that the class of ‐free graphs has bounded clique‐width via a reduction to K4‐free chordal graphs. Finally, we give a complete classification of the (un)boundedness of clique‐width of H‐free weakly chordal graphs.  相似文献   

15.
Basic chordal graphs arose when comparing clique trees of chordal graphs and compatible trees of dually chordal graphs. They were defined as those chordal graphs whose clique trees are exactly the compatible trees of its clique graph.In this work, we consider some subclasses of basic chordal graphs, like hereditary basic chordal graphs, basic DV and basic RDV graphs, we characterize them and we find some other properties they have, mostly involving clique graphs.  相似文献   

16.
In this paper we examine the connections between equistable graphs, general partition graphs and triangle graphs. While every general partition graph is equistable and every equistable graph is a triangle graph, not every triangle graph is equistable, and a conjecture due to Jim Orlin states that every equistable graph is a general partition graph. The conjecture holds within the class of chordal graphs; if true in general, it would provide a combinatorial characterization of equistable graphs.Exploiting the combinatorial features of triangle graphs and general partition graphs, we verify Orlin’s conjecture for several graph classes, including AT-free graphs and various product graphs. More specifically, we obtain a complete characterization of the equistable graphs that are non-prime with respect to the Cartesian or the tensor product, and provide some necessary and sufficient conditions for the equistability of strong, lexicographic and deleted lexicographic products. We also show that the general partition graphs are not closed under the strong product, answering a question by McAvaney et al.  相似文献   

17.
Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. They are defined by the existence of a certain partition of vertices, which is NP-complete to decide for general graphs. It has been recently proved that for cographs, the existence of such a partition can be characterized by finitely many forbidden subgraphs, and hence tested in polynomial time. In this paper we address the question of polarity of chordal graphs, arguing that this is in essence a question of colourability, and hence chordal graphs are a natural restriction. We observe that there is no finite forbidden subgraph characterization of polarity in chordal graphs; nevertheless we present a polynomial time algorithm for polarity of chordal graphs. We focus on a special case of polarity (called monopolarity) which turns out to be the central concept for our algorithms. For the case of monopolar graphs, we illustrate the structure of all minimal obstructions; it turns out that they can all be described by a certain graph grammar, permitting our monopolarity algorithm to be cast as a certifying algorithm.  相似文献   

18.
The problem of recognizing cover-incomparability graphs (i.e. the graphs obtained from posets as the edge-union of their covering and incomparability graph) was shown to be NP-complete in general [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], while it is for instance clearly polynomial within trees. In this paper we concentrate on (classes of) chordal graphs, and show that any cover-incomparability graph that is a chordal graph is an interval graph. We characterize the posets whose cover-incomparability graph is a block graph, and a split graph, respectively, and also characterize the cover-incomparability graphs among block and split graphs, respectively. The latter characterizations yield linear time algorithms for the recognition of block and split graphs, respectively, that are cover-incomparability graphs.  相似文献   

19.
 A bull is a graph obtained by adding a pendant vertex at two vertices of a triangle. A graph is perfectly orderable if it admits an ordering such that the greedy sequential method applied on this ordering produces an optimal coloring for every induced subgraph. Chvátal conjectured that every bull-free graph with no odd hole or antihole is perfectly orderable. In a previous paper we studied the structure of general bull-free perfect graphs, and reduced Chvátal's conjecture to the case of weakly chordal graphs. Here we focus on weakly chordal graphs, and we reduce Chvátal's conjecture to a restricted case. Our method lays out the structure of all bull-free weakly chordal graphs. These results have been used recently by Hayward to establish Chvátal's conjecture for this restricted case and therefore in full. Received: November 26, 1997?Final version received: February 27, 2001  相似文献   

20.
A graph is polar if the vertex set can be partitioned into A and B in such a way that the subgraph induced by A is a complete multipartite graph and the subgraph induced by B is a disjoint union of cliques. Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. However, recognizing polar graphs is an NP-complete problem in general. This led to the study of the polarity of special classes of graphs such as cographs and chordal graphs, cf. Ekim et al. (2008) [7] and [5]. In this paper, we study the polarity of line graphs and call a graph line-polar if its line graph is polar. We characterize line-polar bipartite graphs in terms of forbidden subgraphs. This answers a question raised in the fist reference mentioned above. Our characterization has already been used to develop a linear time algorithm for recognizing line-polar bipartite graphs, cf. Ekim (submitted for publication) [6].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号