首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An analytical solution is presented for the 3D static response of variable stiffness non-uniform composite beams. Based on Euler-Bernoulli theory, a set of governing differential equations are obtained, in which four degrees of freedom are fully coupled. For the variable stiffness beam, the governing field equations have variable coefficients reflecting the stiffness variation along the beam. Using the direct integration technique, the general analytical solution is derived in the integral form and the closed-form expressions of the obtained solutions are presented employing a series expansion approximation. The series expansion representation enables the proposed approach to be applicable for variable stiffness composite beams with arbitrary span-wise variation of properties. As an alternative solution, the Chebyshev collocation method is applied to the proposed formulation to verify the results obtained from the analytical solution. A number of variable stiffness composite beams made by fibre steering with various boundary conditions and stacking sequences are considered as the test cases. The static response are presented based on the analytical solution and Chebyshev collocation method and excellent agreement is observed for all test cases. The proposed model presents a reliable and efficient approach for capturing the complicated behaviour of variable stiffness non-uniform composite beams.  相似文献   

2.
基于一阶剪切梁理论,考虑分层边缘区域的变形特点,提出了含穿透分层复合材料梁模型.与传统分层模型不同,该文将未分层部分看作上下子梁,放弃了传统模型中分层前缘横截面始终保持平面的假设.通过分层前缘的位移连续条件和内力连续条件,建立了粘合段和分层段的控制方程.并且,应用该模型对不同边界条件下含不同分层尺寸对称和非对称分层的复合材料层合梁弯曲问题进行了求解,结果与三维有限元计算的结果一致,从而证明了模型的有效性和适用性.  相似文献   

3.
This work deals with a study of the vibrational properties of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs) under the actions of moving load. Timoshenko and Euler-Bernoulli beam theories are used to evaluate dynamic characteristics of the beam. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The primary contribution of the present work deals with the global elastic properties of nano-structured composite beams. The system of equations of motion is derived by using Hamilton’s principle under the assumptions of the Timoshenko beam theory. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. In order to evaluate time response of the system, Newmark method is also used. Numerical results are presented in both tabular and graphical forms to figure out the effects of various material distributions, carbon nanotube orientations, velocity of the moving load, shear deformation, slenderness ratios and boundary conditions on the dynamic characteristics of the beam. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam and it is believed that new results are presented for dynamics of FG nano-structure beams under moving loads which are of interest to the scientific and engineering community in the area of FGM nano-structures.  相似文献   

4.
A simple one-dimensional mechanical model is presented to analyse the static and dynamic feature of non-homogeneous curved beams and closed rings. Each cross-section is assumed to be symmetrical and the “resultant loads” are acted in the plane of symmetry. The internal forces in a cross-section are replaced by an equivalent force–couple system at the origin of the cylindrical coordinate system used. The equations of motion and the boundary conditions are expressed in terms of two kinematical variables. The first kinematical variable is the radial displacement of cross-sections and the second one is the rotation of the cross-sections. Each of them depends on the time and the polar angle. Assumed form of the displacement field assures the fulfillment of the classical Bernoulli–Euler beam theory. Rotary inertia is included in the equations of motion. Natural frequencies for simply supported laminated composite curved beams and non-homogeneous circular rings are obtained by exact solutions. The application of the model presented is illustrated by examples.  相似文献   

5.
一种裂纹梁振动响应分析的近似方法   总被引:7,自引:0,他引:7  
本文以线弹簧模型为基础提出了一种近似分析裂纹梁振动响应的方法.把该方法同Euler-Bernoulli梁理论、模态分析方法以及断裂力学原理等结合起来运用,导出裂纹梁振动的特征方程.作为应用实例,本文考核了简支裂纹梁和悬臂裂纹梁的固有频率响应.结果表明,本文所获得的解与现有文献中的解或实验结果取得很好的一致.  相似文献   

6.
A finite element model is developed to study the large-amplitude free vibrations of generally-layered laminated composite beams. The Poisson effect, which is often neglected, is included in the laminated beam constitutive equation. The large deformation is accounted for by using von Karman strains and the transverse shear deformation is incorporated using a higher order theory. The beam element has eight degrees of freedom with the inplane displacement, transverse displacement, bending slope and bending rotation as the variables at each node. The direct iteration method is used to solve the nonlinear equations which are evaluated at the point of reversal of motion. The influence of boundary conditions, beam geometries, Poisson effect, and ply orientations on the nonlinear frequencies and mode shapes are demonstrated.  相似文献   

7.
This paper presents the decomposition theorem of rectangular beams and indicates that the general state of stress of beams can be decomposed into two parts: the interior state and the Papkovich–Fadle state (shortened form the P–F state). The refined theory of beams is derived by using Papkovich–Neuber solution (shortened form the P–N solution) and Lur’e method without ad hoc assumptions. It is shown that the displacements and stresses of the beam can be represented by the angle of rotation and the deflection of the neutral surface. Based on the refined beam theory, the exact equations for the beam without transverse surface loadings are derived and consist of two governing differential equations: the fourth-order equation and the transcendental equation. It is then proved that the refined beam theory and the decomposition beam theorem are equivalent, i.e., the fourth-order equation and the transcendental equation are equivalent to the interior state and the P–F state, respectively.  相似文献   

8.
Forced vibration analysis of curved beams on two-parameter elastic foundation subjected to impulsive loads are investigated. The Timoshenko beam theory is adopted in the derivation of the governing equation. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method. The solutions obtained are transformed to the real space using the Durbin’s numerical inverse Laplace transform method. The static and forced vibration analysis of circular beams on elastic foundation are analyzed through various examples.  相似文献   

9.
In the present work, the exact solutions for coupled analysis for bending and torsional case thin-walled functionally graded (FG) beams with non-symmetric single- and double-cells are presented for the first time. For this purpose, an accurate and efficient method is proposed to obtain the FG member stiffness matrix based on the series expansions of displacement components. Three types of material distributions are considered and the beam mechanical properties are graded along the wall thickness according to a power law of the volume fraction. The present beam model is on the basis of the Euler-Bernoulli beam theory and the Vlasov one for bending and torsional problems, respectively. The explicit expressions for displacement parameters are derived using the power series approach from the four coupled equilibrium equations. Finally, the FG member stiffness matrix is determined from the seven force-displacement relations. In order to show the accuracy and super convergence of the thin-walled FG beam element developed by this study, the numerical solutions are presented and compared with results obtained from the finite beam element based on the approximate interpolation polynomials and other available results. Especially, the effects of various structural parameters such as material distribution type, volume fraction index, boundary condition, and material ratio on the spatially coupled responses of FG box beams with non-symmetric single- and double-cells are parametrically investigated.  相似文献   

10.
The dynamic response of an infinite Euler–Bernoulli beam resting on an elastic foundation, which considers the tangential interaction between the beam and foundation under harmonic line loads, is developed in this study in the form of a closed-form solution. Previous studies have focused on elastic Winkler foundations, wherein the tangential interaction between the bottom of the beam and the foundation is not considered. In this study, a series of separate horizontal springs is diverted to the contact surface between the foundation and beam to simulate the horizontal tangential effect. The horizontal spring reaction is assumed proportional to the relative tangential displacement. As the geometric equation and linear-elastic constitutive equation of beam under the condition of small deformation have been presented based on the basic principle of elasticity mechanics, the analysis model is built and the governing differential equations about normal and tangential deflections of beam are deduced. Double Fourier transformation and the residue theorem are used to derive the closed-form solution to this problem. The proposed solution is then validated by comparing the degraded solution with the known results and comparing the numerical solution with the analytical solution. We also discuss the case in which the load direction is not vertical to the beam. Results can be used as a reference for engineering design.  相似文献   

11.
A mathematical model for both axial and transverse motions of two beams with cylindrical cross-sections coupled through a joint is presented and analyzed. The motivation for this problem comes from the need to accurately model damping and joint dynamics for the next generation of inflatable/rigidizable space structures. Thermo-elastic damping is included in the two beams and the motions are coupled through a joint which includes an internal moment. Thermal response in each beam is modeled by two temperature fields. The first field describes the circumferentially averaged temperature along the beam, and is linked to the axial deformation of the beam. The second describes the circumferential variation and is coupled to transverse bending. The resulting equations of motion consist of four, second-order in time, partial differential equations, four, first-order in time, partial differential equations, four second order ordinary differential equations, and certain compatibility boundary conditions. The system is written as an abstract differential equation in an appropriate Hilbert space, consisting of function spaces describing the distributed beam deflections and temperature fields, and a finite-dimensional space that projects important features at the joint boundary. Semigroup theory is used to prove that the system is well-posed, and that with positive damping parameters the resulting semigroup is exponentially stable. Steady states are characterized and several numerical approximation results are presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In this study, the dynamic response of an infinite beam resting on a Pasternak foundation subjected to inclined travelling loads was developed in the form of the analytical solution wherein the tangential effect between the beam and foundation and the damping were taken into consideration. Three parameters were used to model the mechanical resistance of the viscoelastic Pasternak foundation, one of them accounts for the compressive stress in the soil, the other accounts for the shearing effect of soils, and the last one accounts for the damping of the foundation. By contrast, the Pasternak model is more realistic than the Winkler model that just considers the compressive resistance of soil. In the paper, the tangential effect between the beam and foundation was simulated by a series of separate horizontal springs, the damping was also considered to obtain the dynamic response under forced vibration. The theory of elasticity and Newton's laws were used to derive the governing equation. To simplify the partial-differential equation to an algebraic equation, the double Fourier transformation was used wherein the analytical solution in the frequency domain for the dynamic response of the beam is obtained. And its inversion was adopted to convert the integral representation of the solution into the time domain. The degraded solution was then utilized to verify the validity of the proposed solution. Finally, the Maple mathematical software was used for further discussion. The solution proposed in this study can be a useful tool for practitioners.  相似文献   

13.
As the deflection of a buried beam subjected to ground settlement is not consistent with the ground displacement, an analytical model is introduced in this study for a buried beam on a tensionless foundation subjected to differential settlement. The buried beam is divided into three segments: the left semi-infinite foundation beam, the right semi-infinite foundation beam, and the middle finite beam separated from the ground. Based on the theory of semi-infinite foundation beams, equations for the response of left and right semi-infinite segment beams are given. Explicit equations are proposed for the response of the middle segment beam; these are combined with the continuous conditions at the segment junctions, and the physical implications of the equation parameters are illustrated. The analytical approach taken in this study is then compared with, and verified against, the methods used in the existing literature. The mechanical state of a buried beam subjected to ground settlement is closely related to the foundation stiffness factor, the flexural stiffness of the beam, the characteristics of the ground settlement, and the vertical earth pressure. When the deformation coefficient is relatively large or ground settlement is relatively narrow, the buried beam may be in the partial contacting state. With an increase in the width and amplitude of ground settlement curve, the foundation stiffness factor, and the different vertical earth pressure between the ground settlement and non-settlement areas, the bending moment and shearing force of buried beams increase.  相似文献   

14.
This paper applies the asymptotic perturbation approach (APA) to obtain a simple analytical expression for the free vibration analysis of non-uniform and non-homogenous beams with different boundary conditions. A linear governing equation of non-uniform and non-homogeneous beams is obtained based on the Euler–Bernoulli beam theory. The perturbative theory is employed to derive an asymptotic solution of the natural frequency of the beam. Finally, numerical solutions based on the analytical method are illustrated, where the effect of a variable width ratio on the natural frequency is analyzed. To verify the accuracy of the present method, two examples, piezoelectric laminated trapezoidal beam and axially functionally graded tapered beam, are presented. The results are compared with those results obtained from the finite element method (FEM) simulation and the published literature, respectively, and a good agreement is observed for lower-order beam frequencies.  相似文献   

15.
A modified continuum model of electrically actuated nanobeams is presented by incorporating surface elasticity in this paper. The classical beam theory is adopted to model the bulk, while the bulk stresses along the surfaces of the bulk substrate are required to satisfy the surface balance equations of the continuum surface elasticity. On the basis of this modified beam theory the governing equation of an electrically actuated nanobeam is derived and a powerful technology, analog equation method (AEM) is applied to solve this complex problem. Beams made from two materials: aluminum and silicon are chosen as examples. The numerical results show that the pull-in phenomena in electrically actuated nanobeams are size-dependent. The effects of the surface energies on the static and dynamic responses, pull-in voltage and pull-in time are discussed.  相似文献   

16.
Multi-step Timoshenko beams coupled with rigid bodies on springs can be regarded as a generalized model to investigate the dynamic characteristics of many structures and mechanical systems in engineering. This paper presents a novel transfer matrix method for the free and forced vibration analyses of the hybrid system. It is modeled as a chain system, where each beam and each rigid body with its supporting spring are dealt with one element, respectively. The transfer equation of each element is deduced based on separation of variables method. The system overall transfer equation is obtained by substituting an element transfer equation into another. Then, the free vibration characteristics are acquired by solving exact homogeneous linear equations. To compute the forced vibration response with modal superposition method, the body dynamic equations and augmented eigenvectors are established, and the orthogonality of augmented eigenvectors is mathematically proved. Without high-order global dynamic equation or approximate spatial discretization, the free and forced vibration analyses of the hybrid system are achieved efficiently and accurately in this study. As an analytical approach, the present method is easy, highly stylized, robust, powerful and general for the complex hybrid systems containing any number of Timoshenko beams and rigid bodies. Four numerical examples are implemented, and the results show that this method is computationally efficient with high precision.  相似文献   

17.
In this paper we develop and analyze a mathematical model for combined axial and transverse motions of two Euler-Bernoulli beams coupled through a joint composed of two rigid bodies. The motivation for this problem comes from the need to accurately model damping and joints for the next generation of inflatable/rigidizable space structures. We assume Kelvin-Voigt damping in the two beams whose motions are coupled through a joint which includes an internal moment. The resulting equations of motion consist of four, second-order in time, partial differential equations, four second-order ordinary differential equations, and certain compatibility boundary conditions. The system is re-cast as an abstract second-order differential equation in an appropriate Hilbert space, consisting of function spaces describing the distributed beam deflections, and a finite-dimensional space that projects important features at the joint boundary. Semigroup theory is used to prove the system is well posed, and that with positive damping parameters the resulting semigroup is analytic and exponentially stable. The spectrum of the infinitesimal generator is characterized.  相似文献   

18.
By use of Nevanlinna value distribution theory,we will investigate the properties of meromorphic solutions of two types of systems of composite functional equations and obtain some results. One of the results we get is about both components of meromorphic solutions on the system of composite functional equations satisfying Riccati differential equation,the other one is property of meromorphic solutions of the other system of composite functional equations while restricting the growth.  相似文献   

19.
It is shown that Lie group analysis of differential equations provides the exact solutions of two-dimensional stratified rotating Boussinesq equations which are a basic model in geophysical fluid dynamics. The exact solutions are obtained as group invariant solutions corresponding to the translation and dilation generators of the group of transformations admitted by the equations. The comparison with the previous analytic studies and experimental observations confirms that the anisotropic nature of the wave motion allows to associate these invariant solutions with uni-directional internal wave beams propagating through the medium. It is also shown that the direction of internal wave beam propagation is in the transverse direction to one of the invariants which corresponds to a linear combination of the translation symmetries. Furthermore, the amplitudes of a linear superposition of wave-like invariant solutions forming the internal gravity wave beams are arbitrary functions of that invariant. Analytic examples of the latitude-dependent invariant solutions associated with internal gravity wave beams that have different general profiles along the obtained invariant and propagating in the transverse direction are considered. The behavior of the invariant solutions near the critical latitude is illustrated.  相似文献   

20.
《Applied Mathematical Modelling》2014,38(7-8):2130-2140
Vibration of non-uniform beams with different boundary conditions subjected to a moving mass is investigated. The beam is modeled using Euler–Bernoulli beam theory. Applying the method of eigenfunction expansion, equation of motion has been transformed into a number of coupled linear time-varying ordinary differential equations. In non-uniform beams, the exact vibration functions do not exist and in order to solve these equations using eigenfunction expansion method, an adequate set of functions must be selected as the assumed vibration modes. A set of polynomial functions called as beam characteristic polynomials, which is constructed by considering beam boundary conditions, have been used along with the vibration functions of the equivalent uniform beam with similar boundary conditions, as the assumed vibration functions. Orthogonal polynomials which are generated by utilizing a Gram–Schmidt process are also used, and results of their application show no advantage over the set of simple non-orthogonal polynomials. In the numerical examples, both natural frequencies and forced vibration of three different non-uniform beams with different shapes and boundary conditions are scrutinized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号