首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A function ${u : X \to \mathbb{R}}$ defined on a partially ordered set is quasi-Leontief if, for all ${x \in X}$ , the upper level set ${\{x\prime \in X : u(x\prime) \geq u(x)\}}$ has a smallest element; such an element is an efficient point of u. An abstract game ${u_{i} : \prod^{n}_{j=1} X_j \to \mathbb{R}, i \in \{1, \ldots , n\}}$ , is a quasi-Leontief game if, for all i and all ${(x_{j})_{j \neq i} \in \prod_{j \neq i} X_{j}, u_{i}((x_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ is quasi-Leontief; a Nash equilibrium x* of an abstract game ${u_{i} :\prod^{n}_{j=1} X_{j} \to \mathbb{R}}$ is efficient if, for all ${i, x^{*}_{i}}$ is an efficient point of the partial function ${u_{i}((x^{*}_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ . We establish the existence of efficient Nash equilibria when the strategy spaces X i are topological semilattices which are Peano continua and Lawson semilattices.  相似文献   

2.
By a $\mathfrak{B}$ -regular variety, we mean a smooth projective variety over $\mathbb{C}$ admitting an algebraic action of the upper triangular Borel subgroup $\mathfrak{B} \subset {\text{SL}}_{2} {\left( \mathbb{C} \right)}$ such that the unipotent radical in $\mathfrak{B}$ has a unique fixed point. A result of Brion and the first author [4] describes the equivariant cohomology algebra (over $\mathbb{C}$ ) of a $\mathfrak{B}$ -regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^{1}$ . The main result of this paper uses this fact to classify the $\mathfrak{B}$ -invariant subvarieties Y of a $\mathfrak{B}$ -regular variety X for which the restriction map i Y : H *(X) → H *(Y) is surjective.  相似文献   

3.
Let K be a field, $\mathcal {O}_v$ a valuation ring of K associated to a valuation v: K → Γ?∪?{?∞?}, and m v the unique maximal ideal of $\mathcal {O}_v$ . Consider an ideal $\mathcal {I}$ of the free K-algebra $K\langle X\rangle =K\langle X_1,...,X_n\rangle$ on X 1,...,X n . If ${\cal I}$ is generated by a subset $\mathcal {G}\subset{\cal O}_v\langle X\rangle$ which is a monic Gr?bner basis of ${\cal I}$ in $K\langle X\rangle$ , where $\mathcal {O}_v\langle X\rangle =\mathcal{O}_v\langle X_1,...,X_n\rangle$ is the free $\mathcal{O}_v$ -algebra on X 1,...,X n , then the valuation v induces naturally an exhaustive and separated Γ-filtration F v A for the K-algebra $A=K\langle X\rangle /\mathcal {I}$ , and moreover $\mathcal{I}\cap\mathcal{O}_v\langle X\rangle =\langle\mathcal{G}\rangle$ holds in $\mathcal{O}_v\langle X\rangle$ ; it follows that, if furthermore $\mathcal{G}\not\subset {\bf m}_v{O}_v\langle X\rangle$ and $k\langle X\rangle /\langle\overline{\mathcal G}\rangle$ is a domain, where $k=\mathcal{O}_v/{\bf m}_v$ is the residue field of $\mathcal{O}_v$ , $k\langle X\rangle =k\langle X_1,...,X_n\rangle$ is the free k-algebra on X 1,...,X n , and $\overline{\mathcal G}$ is the image of $\mathcal{G}$ under the canonical epimorphism $\mathcal{O}_v\langle X\rangle\rightarrow k\langle X\rangle$ , then F v A determines a valuation function A → Γ?∪?{?∞?}, and thereby v extends naturally to a valuation function on the (skew-)field Δ of fractions of A provided Δ exists.  相似文献   

4.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

5.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

6.
We generalize the well-known Lax-Milgram theorem on the Hilbert space to that on the Banach space. Suppose that ${a(\cdot, \cdot)}$ is a continuous bilinear form on the product ${X\times Y}$ of Banach spaces X and Y, where Y is reflexive. If null spaces N X and N Y associated with ${a(\cdot, \cdot)}$ have complements in X and in Y, respectively, and if ${a(\cdot, \cdot)}$ satisfies certain variational inequalities both in X and in Y, then for every ${F \in N_Y^{\perp}}$ , i.e., ${F \in Y^{\ast}}$ with ${F(\phi) = 0}$ for all ${\phi \in N_Y}$ , there exists at least one ${u \in X}$ such that ${a(u, \varphi) = F(\varphi)}$ holds for all ${\varphi \in Y}$ with ${\|u\|_X \le C\|F\|_{Y^{\ast}}}$ . We apply our result to several existence theorems of L r -solutions to the elliptic system of boundary value problems appearing in the fluid mechanics.  相似文献   

7.
Let a representation T of a unital topological semigroup G on a topological linear space X be given. We call ${x \in X}$ a finite vector if its orbit T(G)x is contained in a finite dimensional subspace. In this paper some statements on finite vectors will be proved and applied to the functional equation $$ f(g_1g_2\cdots g_n) = \sum_{E}\sum_{j=1}^{N_E}u^E_jv^E_j $$ where E runs through all proper non-empty subsets of ${\{1,2,\ldots,n\}, N_E \in \mathbb{N}}$ , and for each E, the functions ${u^E_j}$ only depend on variables g i with ${i\in E}$ , while the ${v^E_j}$ only depend on g i with ${i\notin E}$ .  相似文献   

8.
Given X,Y two ${\mathbb{Q}}$ -vector spaces, and f : XY, we study under which conditions on the sets ${B_{k} \subseteq X, k=1,\ldots,s}$ , if ${\Delta_{h_1h_2 \cdots h_s}f(x) = 0}$ for all ${x \in X}$ and ${h_k \in B_k, k = 1,2,\ldots,s}$ , then ${\Delta_{h_1h_2\cdots h_{s}}f(x) = 0}$ for all ${(x,h_{1},\ldots,h_{s}) \in X^{s+1}}$ .  相似文献   

9.
10.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

11.
A double line ${C \subset \mathbb{P}^3}$ is a connected divisor of type (2, 0) on a smooth quadric surface. Fix ${(a, c) \in \mathbb{N}^2\ \backslash\ \{(0, 0)\}}$ . Let ${X \subset \mathbb{P}^3}$ be a general disjoint union of a lines and c double lines. Then X has maximal rank, i.e. for each ${t \in \mathbb{Z}}$ either ${h^1(\mathcal{I}_X(t)) = 0}$ or ${h^0(\mathcal{I}_X(t)) = 0}$ .  相似文献   

12.
The present paper proposes a general theory for $\left( \mathcal{Z}_{1}, \mathcal{Z}_{2}\right) $ -complete partially ordered sets (alias $\mathcal{Z} _{1}$ -join complete and $\mathcal{Z}_{2}$ -meet complete partially ordered sets) and their Stone-like representations. It is shown that for suitably chosen subset selections $\mathcal{Z}_{i}$ (i?=?1,...,4) and $\mathcal{Q} =\left( \mathcal{Z}_{1},\mathcal{Z}_{2},\mathcal{Z}_{3},\mathcal{Z} _{4}\right) $ , the category $\mathcal{Q}$ P of $\left( \mathcal{Z}_{1},\mathcal{Z}_{2}\right) $ -complete partially ordered sets and $\left( \mathcal{Z}_{3},\mathcal{Z}_{4}\right) $ -continuous (alias $\mathcal{ Z}_{3}$ -join preserving and $\mathcal{Z}_{4}$ -meet preserving) functions forms a useful categorical framework for various order-theoretical constructs, and has a close connection with the category $\mathcal{Q}$ S of $\mathcal{Q}$ -spaces which are generalizations of topological spaces involving subset selections. In particular, this connection turns into a dual equivalence between the full subcategory $ \mathcal{Q}$ P s of $\mathcal{Q}$ P of all $\mathcal{Q}$ -spatial objects and the full subcategory $\mathcal{Q}$ S s of $\mathcal{Q}$ S of all $\mathcal{Q}$ -sober objects. Here $\mathcal{Q}$ -spatiality and $\mathcal{Q}$ -sobriety extend usual notions of spatiality of locales and sobriety of topological spaces to the present approach, and their relations to $\mathcal{Z}$ -compact generation and $\mathcal{Z}$ -sobriety have also been pointed out in this paper.  相似文献   

13.
A directed triple system of order v,denoted by DTS(v),is a pair (X,B) where X is a v-set and B is a collection of transitive triples on X such that every ordered pair of X belongs to exactly one triple of B.A DTS(v) (X,A) is called pure and denoted by PDTS(v) if (a,b,c) ∈ A implies (c,b,a) ∈/ A.An overlarge set of PDTS(v),denoted by OLPDTS(v),is a collection {(Y \{yi},Aij) : yi ∈ Y,j ∈ Z3},where Y is a (v+1)-set,each (Y \{yi},Aij) is a PDTS(v) and these Ais form a partition of all transitive triples on Y .In this paper,we shall discuss the existence problem of OLPDTS(v) and give the following conclusion: there exists an OLPDTS(v) if and only if v ≡ 0,1 (mod 3) and v 3.  相似文献   

14.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

15.
Let G be a simple algebraic group defined over ?. Let e be a nilpotent element in $ \mathfrak{g} $ = Lie(G) and denote by U ( $ \mathfrak{g} $ , e) the finite W-algebra associated with the pair ( $ \mathfrak{g} $ , e). It is known that the component group Γ of the centraliser of e in G acts on the set ? of all one-dimensional representations of U ( $ \mathfrak{g} $ , e). In this paper we prove that the fixed point set ?Γ is non-empty. As a corollary, all finite W-algebras associated with $ \mathfrak{g} $ admit one-dimensional representations. In the case of rigid nilpotent elements in exceptional Lie algebras we find irreducible highest weight $ \mathfrak{g} $ -modules whose annihilators in U ( $ \mathfrak{g} $ ) come from one-dimensional representations of U ( $ \mathfrak{g} $ , e) via Skryabin’s equivalence. As a consequence, we show that for any nilpotent orbit $ \mathcal{O} $ in $ \mathfrak{g} $ there exists a multiplicity-free (and hence completely prime) primitive ideal of U ( $ \mathfrak{g} $ ) whose associated variety equals the Zariski closure of $ \mathcal{O} $ in $ \mathfrak{g} $ .  相似文献   

16.
Let S 0 = 0, {S n n ≥ 1} be a random walk generated by a sequence of i.i.d. random variables X 1, X 2, . . . and let $\tau ^{-}={\rm min} \{ n \geq 1:S_{n}\leq 0 \}$ and $\tau ^{+}={\rm min}\{n\geq1:S_{n} > 0\} $ . Assuming that the distribution of X 1 belongs to the domain of attraction of an α-stable law we study the asymptotic behavior, as ${n\rightarrow \infty }$ , of the local probabilities ${\bf P}{(\tau ^{\pm }=n)}$ and prove the Gnedenko and Stone type conditional local limit theorems for the probabilities ${\bf P}{(S_{n} \in [x,x+\Delta )|\tau^{-} > n)}$ with fixed Δ and ${x=x(n)\in (0,\infty )}$ .  相似文献   

17.
Let G be a homogeneous group, and let X 1, X 2, … , X m be left invariant real vector fields being homogeneous of degree one on G. We consider the following Dirichlet boundary value problem of the sub-Laplace equation involving the critical exponent and singular term: $$\left\{\begin{array}{ll}-\sum_{j=1}^{m}X_j^2u(x)-\frac{a}{\|x\|^\nu}u(x)=u^{\frac{Q+2}{Q-2}}(x), x\in\Omega,\\ u(x)=0, \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, x\in \partial\Omega,\end{array}\right.$$ where ${\Omega\subset G}$ is a bounded domain with smooth boundary and ${\mathbf{0}\in\Omega}$ , Q is the homogeneous dimension of G, ${a\in \mathbb{R},\ \nu <2 }$ . We boost u to ${L^p(\Omega)}$ for any ${1\leq p < \infty}$ if ${u\in S^{1,2}_0(\Omega)}$ is a weak solution of the problem above.  相似文献   

18.
This paper concerns the existence and asymptotic characterization of saddle solutions in ${\mathbb {R}^{3}}$ for semilinear elliptic equations of the form $$-\Delta u + W'(u) = 0,\quad (x, y, z) \in {\mathbb {R}^{3}} \qquad\qquad\qquad (0.1)$$ where ${W \in \mathcal{C}^{3}(\mathbb {R})}$ is a double well symmetric potential, i.e. it satisfies W(?s) =  W(s) for ${s \in \mathbb {R},W(s) > 0}$ for ${s \in (-1,1)}$ , ${W(\pm 1) = 0}$ and ${W''(\pm 1) > 0}$ . Denoted with ${\theta_{2}}$ the saddle planar solution of (0.1), we show the existence of a unique solution ${\theta_{3} \in {\mathcal{C}^{2}}(\mathbb {R}^{3})}$ which is odd with respect to each variable, symmetric with respect to the diagonal planes, verifies ${0 < \theta_{3}(x,y,z) < 1}$ for x, y, z >  0 and ${\theta_{3}(x, y, z) \to_{z \to + \infty} \theta_{2}(x, y)}$ uniformly with respect to ${(x, y) \in \mathbb {R}^{2}}$ .  相似文献   

19.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^p(\mathbb{R},w)}$ , where ${p\in(1,\infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{U}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a\in PSO^\diamond}$ ) and all convolution operators W 0(b) ( ${b\in PSO_{p,w}^\diamond}$ ), where ${PSO^\diamond\subset L^\infty(\mathbb{R})}$ and ${PSO_{p,w}^\diamond\subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R}\cup\{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^p(\mathbb{R},w)}$ . Under some conditions on the Muckenhoupt weight w, using results of the local study of ${\mathfrak{U}_{p,w}}$ obtained in the first part of the paper and applying the theory of Mellin pseudodifferential operators and the two idempotents theorem, we now construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{U}_{p,w}}$ and establish a Fredholm criterion for the operators ${A\in\mathfrak{U}_{p,w}}$ in terms of their Fredholm symbols. In four partial cases we obtain for ${\mathfrak{U}_{p,w}}$ more effective results.  相似文献   

20.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号