首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the stability of two‐dimensional periodic solutions to magnetohydrodynamics equations in the class of three‐dimensional periodic solutions. We show the existence of global, strong three‐dimensional solutions to magnetohydrodynamics equations, which are close to two‐dimensional solutions. The advantage of our approach is that neither these solutions nor the external forces have to vanish at infinity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
With the aid of computer symbolic computation system Maple, the generalized auxiliary equation method is first applied to two nonlinear evolution equations, namely, the nonlinear elastic rod equation and (2 + 1)‐dimensional Boiti‐Leon‐Pempinelli equation. As a results, some new types of exact traveling wave solutions are obtained which include bell and kink profile solitary wave solutions, and triangular periodic wave solutions and singular solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
In this paper, we study the dynamic stability of the three‐dimensional axisymmetric Navier‐Stokes Equations with swirl. To this purpose, we propose a new one‐dimensional model that approximates the Navier‐Stokes equations along the symmetry axis. An important property of this one‐dimensional model is that one can construct from its solutions a family of exact solutions of the three‐dimensionaFinal Navier‐Stokes equations. The nonlinear structure of the one‐dimensional model has some very interesting properties. On one hand, it can lead to tremendous dynamic growth of the solution within a short time. On the other hand, it has a surprising dynamic depletion mechanism that prevents the solution from blowing up in finite time. By exploiting this special nonlinear structure, we prove the global regularity of the three‐dimensional Navier‐Stokes equations for a family of initial data, whose solutions can lead to large dynamic growth, but yet have global smooth solutions. © 2007 Wiley Periodicals, Inc.  相似文献   

4.
I. Stratis In this work, we investigate the analyticity properties of solutions of Kuramoto–Sivashinsky‐type equations in two spatial dimensions, with periodic initial data. In order to do this, we explore the applicability in three‐dimensional models of a spectral method, which was developed by the authors for the one‐dimensional Kuramoto–Sivashinsky equation. We introduce a criterion, which provides a sufficient condition for analyticity of a periodic function uC, involving the rate of growth of ?nu, in suitable norms, as n tends to infinity. This criterion allows us to establish spatial analyticity for the solutions of a variety of systems, including Topper–Kawahara, Frenkel–Indireshkumar, and Coward–Hall equations and their dispersively modified versions, once we assume that these systems possess global attractors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Waves with constant, nonzero linearized frequency form an interesting class of nondispersive waves whose properties differ from those of nondispersive hyperbolic waves. We propose an inviscid Burgers‐Hilbert equation as a model equation for such waves and give a dimensional argument to show that it models Hamiltonian surface waves with constant frequency. Using the method of multiple scales, we derive a cubically nonlinear, quasi‐linear, nonlocal asymptotic equation for weakly nonlinear solutions. We show that the same asymptotic equation describes surface waves on a planar discontinuity in vorticity in two‐dimensional inviscid, incompressible fluid flows. Thus, the Burgers‐Hilbert equation provides an effective equation for these waves. We describe the Hamiltonian structure of the Burgers‐Hilbert and asymptotic equations, and show that the asymptotic equation can also be derived by means of a near‐identity transformation. We derive a semiclassical approximation of the asymptotic equation and show that spatially periodic, harmonic traveling waves are linearly and modulationally stable. Numerical solutions of the Burgers‐Hilbert and asymptotic equations are in excellent agreement in the appropriate regime. In particular, the lifespan of small‐amplitude smooth solutions of the Burgers‐Hilbert equation is given by the cubically nonlinear timescale predicted by the asymptotic equation. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
In this paper, the partially party‐time () symmetric nonlocal Davey–Stewartson (DS) equations with respect to x is called x‐nonlocal DS equations, while a fully symmetric nonlocal DSII equation is called nonlocal DSII equation. Three kinds of solutions, namely, breather, rational, and semirational solutions for these nonlocal DS equations are derived by employing the bilinear method. For the x‐nonlocal DS equations, the usual (2 + 1)‐dimensional breathers are periodic in x direction and localized in y direction. Nonsingular rational solutions are lumps, and semirational solutions are composed of lumps, breathers, and periodic line waves. For the nonlocal DSII equation, line breathers are periodic in both x and y directions with parallels in profile, but localized in time. Nonsingular rational solutions are (2 + 1)‐dimensional line rogue waves, which arise from a constant background and disappear into the same constant background, and this process only lasts for a short period of time. Semirational solutions describe interactions of line rogue waves and periodic line waves.  相似文献   

7.
Based on a Riccati equation and one of its new generalized solitary solutions constructed by the Exp‐function method, new analytic solutions with free parameters and arbitrary functions of a (2 + 1)‐dimensional variable‐coefficient Broer–Kaup system are obtained. These free parameters and arbitrary functions reveal that the (2 + 1)‐dimensional variable‐coefficient Broer–Kaup system has rich spatial structures. As an illustrative example, two new spatial structures are shown by setting the arbitrary functions as different Jacobi elliptic functions. Compared with tanh‐function method and its extensions, the method proposed in this paper is more powerful and it can be applied to other nonlinear evolution equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We study in this article the long‐time behavior of solutions of fourth‐order parabolic equations in bfR3. In particular, we prove that under appropriate assumptions on the nonlinear interaction function and on the external forces, these equations possess infinite‐dimensional exponential attractors whose Kolmogorov's ε‐entropy satisfies an estimate of the same type as that obtained previously for the ε‐entropy of the global attractor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We consider three‐dimensional inviscid‐irrotational flow in a two‐layer fluid under the effects of gravity and surface tension, where the upper fluid is bounded above by a rigid lid and the lower fluid is bounded below by a flat bottom. We use a spatial dynamics approach and formulate the steady Euler equations as an infinite‐dimensional Hamiltonian system, where an unbounded spatial direction x is considered as a time‐like coordinate. In addition, we consider wave motions that are periodic in another direction z. By analyzing the dispersion relation, we detect several bifurcation scenarios, two of which we study further: a type of 00(is)(iκ0) resonance and a Hamiltonian Hopf bifurcation. The bifurcations are investigated by performing a center‐manifold reduction, which yields a finite‐dimensional Hamiltonian system. For this finite‐dimensional system, we establish the existence of periodic and homoclinic orbits, which correspond to, respectively, doubly periodic travelling waves and oblique travelling waves with a dark or bright solitary wave profile in the x direction. The former are obtained using a variational Lyapunov‐Schmidt reduction and the latter by first applying a normal form transformation and then studying the resulting canonical system of equations.  相似文献   

10.
This paper deals with an adaptation of the Poincaré‐Lindstedt method for the determination of periodic orbits in three‐dimensional nonlinear differential systems. We describe here a general symbolic algorithm to implement the method and apply it to compute periodic solutions in a three‐dimensional Lotka‐Volterra system modeling a chain food interaction. The sufficient conditions to make secular terms disappear from the approximate series solution are given in the paper.  相似文献   

11.
In this paper, we establish the orbital stability of a class of spatially periodic wave train solutions to multidimensional nonlinear Klein–Gordon equations with periodic potential. We show that the orbit generated by the one‐dimensional wave train is stable under the flow of the multidimensional equation under perturbations which are, on one hand, coperiodic with respect to the translation or Galilean variable of propagation, and, on the other hand, periodic (but not necessarily coperiodic) with respect to the transverse directions. That is, we show their transverse orbital stability. The class of periodic wave trains under consideration is the family of subluminal rotational waves, which are periodic in the momentum but unbounded in their position.  相似文献   

12.
We consider the fully parity‐time (PT) symmetric nonlocal (2 + 1)‐dimensional nonlinear Schrödinger (NLS) equation with respect to x and y. By using Hirota's bilinear method, we derive the N‐soliton solutions of the nonlocal NLS equation. By using the resulting N‐soliton solutions and employing long wave limit method, we derive its nonsingular rational solutions and semi‐rational solutions. The rational solutions act as the line rogue waves. The semi‐rational solutions mean different types of combinations in rogue waves, breathers, and periodic line waves. Furthermore, in order to easily understand the dynamic behaviors of the nonlocal NLS equation, we display some graphics to analyze the characteristics of these solutions.  相似文献   

13.
In this paper, we consider the compressible bipolar Navier–Stokes–Poisson equations with a non‐flat doping profile in three‐dimensional space. The existence and uniqueness of the non‐constant stationary solutions are established when the doping profile is a small perturbation of a positive constant state. Then under the smallness assumption of the initial perturbation, we show the global existence of smooth solutions to the Cauchy problem near the stationary state. Finally, the convergence rates are obtained by combining the energy estimates for the nonlinear system and the L2‐decay estimates for the linearized equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we will establish the bounded solutions, periodic solutions, quasiperiodic solutions, almost periodic solutions, and almost automorphic solutions for linearly coupled complex cubic‐quintic Ginzburg‐Landau equations, under suitable conditions. The main difficulty is the nonlinear terms in the equations that are not Lipschitz‐continuity, traditional methods cannot deal with the difficulty in our problem. We overcome this difficulty by the Galerkin approach, energy estimate method, and refined inequality technique.  相似文献   

15.
We use the bifurcation method of dynamical systems to study the (2+1)‐dimensional Broer–Kau–Kupershmidt equation. We obtain some new nonlinear wave solutions, which contain solitary wave solutions, blow‐up wave solutions, periodic smooth wave solutions, periodic blow‐up wave solutions, and kink wave solutions. When the initial value vary, we also show the convergence of certain solutions, such as the solitary wave solutions converge to the kink wave solutions and the periodic blow‐up wave solutions converge to the solitary wave solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
We consider the existence of spots and stripes for a class of nonlinear Schrödinger‐type equations in the presence of nearly one‐dimensional localized potentials. Under suitable assumptions on the potential, we construct various types of waves that are localized in the direction of the potential and have single‐ or multihump, or periodic profile in the perpendicular direction. The analysis relies upon a spatial dynamics formulation of the existence problem, together with a center manifold reduction. This reduction procedure allows these waves to be realized as unipulse or multipulse homoclinic orbits, or periodic orbits in a reduced system of ordinary differential equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The similarity transform for the steady three‐dimensional Navier‐Stokes equations of flow between two stretchable disks gives a system of nonlinear ordinary differential equations which is analytically solved by applying a newly developed method, namely, the homotopy analysis method. The analytic solutions of the system of nonlinear ordinary differential equations are constructed in the series form. The convergence of the obtained series solutions is analyzed. The validity of our solutions is verified by the numerical results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

18.
The Hirota bilinear method is prepared for searching the diverse soliton solutions for the fractional generalized Calogero‐Bogoyavlenskii‐Schiff‐Bogoyavlensky‐Konopelchenko (CBS‐BK) equation. Also, the Hirota bilinear method is used to finding the lump and interaction with two stripe soliton solutions. Interaction among lumps, periodic waves, and multi‐kink soliton solutions will be investigated. Also, the solitary wave, periodic wave, and cross‐kink wave solutions will be examined for the fractional gCBS‐BK equation. The graphs for various fractional order α are plotted to contain 3D plot, contour plot, density plot, and 2D plot. We construct the exact lump and interaction among other types solutions, by solving the under‐determined nonlinear system of algebraic equations for the associated parameters. Finally, analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed. The existence conditions are employed to discuss the available got solutions.  相似文献   

19.
By introducing an elliptic vortex ansatz, the 2+1‐dimensional two‐layer fluid system is reduced to a finite‐dimensional nonlinear dynamical system. Time‐modulated variables are then introduced and multicomponent Ermakov systems are isolated. The latter is shown to be also Hamiltonian, thereby admitting general solutions in terms of an elliptic integral representation. In particular, a subclass of vortex solutions is obtained and their behaviors are simulated. Such solutions have recently found applications in oceanic and atmospheric dynamics. Moreover, it is proved that the Hamiltonian system is equivalent to the stationary nonlinear cubic Schrödinger equations coupled with a Steen‐Ermakov‐Pinney equation.  相似文献   

20.
We consider the Navier–Stokes equations in an aperture domain of the three‐dimensional Euclidean space. We are interested in proving the existence of regular solutions corresponding to small initial data and flux through the aperture. The flux is assumed to be smooth and bounded on (0, +∞). As a consequence, we prove the existence of a time‐periodic solution corresponding to a time‐periodic flux through the aperture. Finally, we compare our solution with a solution belonging to a wider class, showing that, if such a solution does exist, then the two solutions coincide. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号