首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一维Burgers方程和KdV方程的广义有限谱方法   总被引:2,自引:0,他引:2  
给出了高精度的广义有限谱方法.为使方法在时间离散方面保持高精度,采用了Adams-Bashforth 预报格式和Adams-Moulton校正格式,为了避免由Korteweg-de Vries(KdV)方程的弥散项引起的数值振荡, 给出了两种数值稳定器.以Legendre多项式、Chebyshev多项式和Hermite多项式为基函数作为例子,给出的方法与具有分析解的Burgers方程的非线性对流扩散问题和KdV方程的单孤独波和双孤独波传播问题进行了比较,结果非常吻合.  相似文献   

2.
In this article, numerical solution for the Rosenau-RLW equation in 2D is considered and a conservative Crank–Nicolson finite difference scheme is proposed. Existence of the numerical solutions for the difference scheme has been shown by Browder fixed point theorem. A priori bound and uniqueness as well as conservation of discrete mass and discrete energy for the finite difference solutions are discussed. Unconditional stability and a second-order accuracy on both space and time of the difference scheme are proved. Numerical experiments are given to support our theoretical results.  相似文献   

3.
In this paper we study the behavior of the numerical solution of nonlinear reaction-diffusion systems, with periodic in time nonlinear term, obtained via the known θ-method. In particular we are interested to the existence and asymptotic stability of the numerical periodic solutions in order to simulate the behaviour of the theoretical solution. To this end, by imposing the positivity of the numerical scheme, we can use some results about M-matrices.So, by means of particular over and upper solutions, we study some conditions for the stability and instability of the trivial solution.Finally we show when a positive numerical periodic solution exists and when it is unique and asymptotically stable.  相似文献   

4.
A monotone finite element scheme is obtained by applying the finite element method to the viscosity equation of the Hamilton-Jacobi equation on unstructured meshes. Under some constraints, we show that this scheme is monotone and its numerical solution converges to the viscosity solution of the Hamilton-Jacobi equa-tion. Numerical examples test the stability and the convergence of this scheme.  相似文献   

5.
In this paper, we investigate the numerical solution of the three-dimensional (3D) nonlinear tempered fractional integrodifferential equation which is subject to the initial and boundary conditions. The backward Euler (BE) method in association with the first-order convolution quadrature rule is employed to discretize this equation for time, and the Galerkin finite element method is applied for space, which is combined with an alternating direction implicit (ADI) algorithm, in order to reduce the computational cost for solving the three-dimensional nonlocal problem. Then a fully discrete BE ADI Galerkin finite element scheme can be obtained by linearizing the non-linear term. Thereafter we prove a positive-type lemma, from which the stability and convergence of the proposed numerical scheme are derived based on the energy method. Numerical experiments are performed to verify the effectiveness of the proposed approach.  相似文献   

6.
In this paper, a scheme is developed to study numerical solution of the space- and time-fractional Burgers equations with initial conditions by the variational iteration method (VIM). The exact and numerical solutions obtained by the variational iteration method are compared with that obtained by Adomian decomposition method (ADM). The results show that the variational iteration method is much easier, more convenient, and more stable and efficient than Adomian decomposition method. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.  相似文献   

7.
This study deals with the convergence of a numerical scheme for conservation laws including source terms. A splitting method for source term integration is presented. More precisely, the convergence of the numerical solution towards the entropy solution is proved in the scalar case. Because of the effect of source term, the constructed scheme is total variation bounded. Numerical experiments for one-dimensional shallow water equation are presented to demonstrate the performance of the scheme.  相似文献   

8.
In this paper, space adaptivity is introduced to control the error in the numerical solution of hyperbolic systems of conservation laws. The reference numerical scheme is a new version of the discontinuous Galerkin method, which uses an implicit diffusive term in the direction of the streamlines, for stability purposes. The decision whether to refine or to unrefine the grid in a certain location is taken according to the magnitude of wavelet coefficients, which are indicators of local smoothness of the numerical solution. Numerical solutions of the nonlinear Euler equations illustrate the efficiency of the method.  相似文献   

9.
Numerical solutions of the Benjamin‐Bona‐Mahony‐Burgers equation in one space dimension are considered using Crank‐Nicolson‐type finite difference method. Existence of solutions is shown by using the Brower's fixed point theorem. The stability and uniqueness of the corresponding methods are proved by the means of the discrete energy method. The convergence in L‐norm of the difference solution is obtained. A conservative difference scheme is presented for the Benjamin‐Bona‐Mahony equation. Some numerical experiments have been conducted in order to validate the theoretical results.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

10.
Summary. We prove numerical stability of a class of piecewise polynomial collocation methods on nonuniform meshes for computing asymptotically stable and unstable periodic solutions of the linear delay differential equation by a (periodic) boundary value approach. This equation arises, e.g., in the study of the numerical stability of collocation methods for computing periodic solutions of nonlinear delay equations. We obtain convergence results for the standard collocation algorithm and for two variants. In particular, estimates of the difference between the collocation solution and the true solution are derived. For the standard collocation scheme the convergence results are “unconditional”, that is, they do not require mesh-ratio restrictions. Numerical results that support the theoretical findings are also given. Received June 9, 2000 / Revised version received December 14, 2000 / Published online October 17, 2001  相似文献   

11.
对广义Rosenau-Burgers方程的初边值问题进行了数值研究,提出了新的两层隐式差分格式,得到了差分解的存在唯一性,并利用能量方法分析了该格式的二阶收敛性与无条件稳定性,并且给出数值算例进行验证.  相似文献   

12.
In the present paper a numerical method, based on finite differences and spline collocation, is presented for the numerical solution of a generalized Fisher integro-differential equation. A composite weighted trapezoidal rule is manipulated to handle the numerical integrations which results in a closed-form difference scheme. A number of test examples are solved to assess the accuracy of the method. The numerical solutions obtained, indicate that the approach is reliable and yields results compatible with the exact solutions and consistent with other existing numerical methods. Convergence and stability of the scheme have also been discussed.  相似文献   

13.
本文针对带非线性源项的Riesz回火分数阶扩散方程,利用预估校正方法离散时间偏导数,并用修正的二阶Lubich回火差分算子逼近Riesz空间回火的分数阶偏导数,构造出一类新的数值格式.给出了数值格式在一定条件下的稳定性与收敛性分析,且该格式的时间与空间收敛阶均为二阶.数值试验表明数值方法是有效的.  相似文献   

14.
In this paper, a finite difference scheme is proposed for solving the nonlinear time-fractional integro-differential equation. This model involves two nonlocal terms in time, ie, a Caputo time-fractional derivative and an integral term with memory. The existence of numerical solutions is shown by the Leray-Schauder theorem. And we obtain the discrete L2 stability and convergence with second order in time and space by the discrete energy method. Then the uniqueness of numerical solutions is derived. Moreover, an iterative algorithm is designed for solving the derived nonlinear system. Numerical examples are presented to validate the theoretical findings and the efficiency of the proposed algorithm.  相似文献   

15.
A meshless method is proposed for the numerical solution of the two space dimensional linear hyperbolic equation subject to appropriate initial and Dirichlet boundary conditions. The new developed scheme uses collocation points and approximates the solution employing thin plate splines radial basis functions. Numerical results are obtained for various cases involving variable, singular and constant coefficients, and are compared with analytical solutions to confirm the good accuracy of the presented scheme. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

16.
Summary. We propose a stable and conservative finite difference scheme to solve numerically the Cahn-Hilliard equation which describes a phase separation phenomenon. Numerical solutions to the equation is hard to obtain because it is a nonlinear and nearly ill-posed problem. We design a new difference scheme based on a general strategy proposed recently by Furihata and Mori. The new scheme inherits characteristic properties, the conservation of mass and the decrease of the total energy, from the equation. The decrease of the total energy implies boundedness of discretized Sobolev norm of the solution. This in turn implies, by discretized Sobolev's lemma, boundedness of max norm of the solution, and hence the stability of the solution. An error estimate for the solution is obtained and the order is . Numerical examples demonstrate the effectiveness of the proposed scheme. Received July 22, 1997 / Revised version received October 19, 1999 / Published online August 2, 2000  相似文献   

17.
王涛  刘铁钢 《计算数学》2016,38(4):391-404
目前,许多高精度差分格式,由于未成功地构造与其精度匹配的稳定的边界格式,不得不采用低精度的边界格式.本文针对对流扩散方程证明了存在一致四阶紧致格式,它的边界点的计算格式和内点的计算格式的截断误差主项保持一致,给出了具体内点和边界格式;并分析了此半离散格式的渐近稳定性.数值结果表明该格式是四阶精度;在对流占优情况下,本文边界格式的数值结果比四阶精度的显式差分格式的的数值结果的数值振荡小,取得了不错的效果,理论结果得到了数值验证;驱动方腔数值结果显示,本文对N-S方程的离散格式具有很好的可靠性,适合对复杂流体流动的数值模拟和研究.  相似文献   

18.
Balanced space-fractional derivative is usually applied in modelling the state-dependence, isotropy, and anisotropy in diffusion phenomena. In this paper, we introduce a class of space-fractional reaction-diffusion model with singular source term arising in combustion process. The fractional derivative employed in this model is defined in the sum of left-sided and right-sided Riemann-Liouville fractional derivatives. With assistance of Kaplan's first eigenvalue method, we prove that the classic solution of this model may not be globally well-defined, and the heat conduction governed by this model depends on the order of fractional derivative, the parameters in the equation, and the length of spatial interval. Finite difference method is implemented to solve this model, and an adaptive strategy is applied to improve the computational efficiency. The positivity, monotonicity, and stability of the numerical scheme are discussed. Numerical simulation and observation of the quenching and stationary solutions coincide the theoretical studies.  相似文献   

19.
The general Degasperis–Procesi equation (gDP) describes the evolution of the water surface in a unidirectional shallow water approximation. We propose a finite-difference scheme for this equation that preserves some conservation and balance laws. In addition, the stability of the scheme and the convergence of numerical solutions to exact solutions for solitons are proved. Numerical experiments confirm the theoretical conclusions. For essentially nonintegrable versions of the gDP equation, it is shown that solitons and antisolitons collide almost elastically: they retain their shape after interaction, but a small “tail”, the so-called “radiation”, appears.  相似文献   

20.
Continuously operated clarifier–thickener (CT) units can be modeled by a non-linear, scalar conservation law with a flux that involves two parameters that depend discontinuously on the space variable. This paper presents two numerical schemes for the solution of this equation that have formal second-order accuracy in both the time and space variable. One of the schemes is based on standard total variation diminishing (TVD) methods, and is addressed as a simple TVD (STVD) scheme, while the other scheme, the so-called flux-TVD (FTVD) scheme, is based on the property that due to the presence of the discontinuous parameters, the flux of the solution (rather than the solution itself) has the TVD property. The FTVD property is enforced by a new nonlocal limiter algorithm. We prove that the FTVD scheme converges to a BV t solution of the conservation law with discontinuous flux. Numerical examples for both resulting schemes are presented. They produce comparable numerical errors, while the FTVD scheme is supported by convergence analysis. The accuracy of both schemes is superior to that of the monotone first-order scheme based on the adaptation of the Engquist–Osher scheme to the discontinuous flux setting of the CT model (Bürger, Karlsen and Towers in SIAM J Appl Math 65:882–940, 2005). In the CT application there is interest in modelling sediment compressibility by an additional strongly degenerate diffusion term. Second-order schemes for this extended equation are obtained by combining either the STVD or the FTVD scheme with a Crank–Nicolson discretization of the degenerate diffusion term in a Strang-type operator splitting procedure. Numerical examples illustrate the resulting schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号