首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary A strong equation driven by a historical Brownian motion is used to construct and characterize measure-valued branching diffusions in which the spatial motions obey an Itô equation with drift and diffusion depending on the position of an individual and the entire population.  相似文献   

3.
A well-known theorem by Spitzer states that the winding number of a standard Brownian motion around the origin is asymptotically Cauchy-distributed. A similar result is derived for positive recurrent diffusions in the plane given by a non-degenerate stochastic equation.  相似文献   

4.
We consider radial Loewner evolution driven by unimodular Lévy processes. We rescale the hulls of the evolution by capacity, and prove that the weak limit of the rescaled hulls exists. We then study a random growth model obtained by driving the Loewner equation with a compound Poisson process. The process involves two real parameters: the intensity of the underlying Poisson process and a localization parameter of the Poisson kernel which determines the jumps. A particular choice of parameters yields a growth process similar to the Hastings-Levitov HL(0) model. We describe the asymptotic behavior of the hulls with respect to the parameters, showing that growth tends to become localized as the jump parameter increases. We obtain deterministic evolutions in one limiting case, and Loewner evolution driven by a unimodular Cauchy process in another. We show that the Hausdorff dimension of the limiting rescaled hulls is equal to 1. Using a different type of compound Poisson process, where the Poisson kernel is replaced by the heat kernel, as driving function, we recover one case of the aforementioned model and SLE(κ) as limits.  相似文献   

5.
Summary The large deviation principle obtained by Freidlin and Wentzell for measures associated with finite-dimensional diffusions is extended to measures given by stochastic evolution equations with non-additive random perturbations. The proof of the main result is adopted from the Priouret paper concerning finite-dimensional diffusions. Exponential tail estimates for infinite-dimensional stochastic convolutions are used as main tools.  相似文献   

6.
Summary We study the asymptotic expansion in small time of the solution of a stochastic differential equation. We obtain a universal and explicit formula in terms of Lie brackets and iterated stochastic Stratonovich integrals. This formula contains the results of Doss [6], Sussmann [15], Fliess and Normand-Cyrot [7], Krener and Lobry [10], Yamato [17] and Kunita [11] in the nilpotent case, and extends to general diffusions the representation given by Ben Arous [3] for invariant diffusions on a Lie group. The main tool is an asymptotic expansion for deterministic ordinary differential equations, given by Strichartz [14].  相似文献   

7.
This work is concerned with several properties of solutions of stochastic differential equations arising from hybrid switching diffusions. The word “hybrid” highlights the coexistence of continuous dynamics and discrete events. The underlying process has two components. One component describes the continuous dynamics, whereas the other is a switching process representing discrete events. One of the main features is the switching component depending on the continuous dynamics. In this paper, weak continuity is proved first. Then continuous and smooth dependence on initial data are demonstrated. In addition, it is shown that certain functions of the solutions verify a system of Kolmogorov's backward differential equations. Moreover, rates of convergence of numerical approximation algorithms are dealt with.  相似文献   

8.
We prove a large deviations principle (LDP) for systems of diffusions (particles) interacting through their ranks when the number of particles tends to infinity. We show that the limiting particle density is given by the unique solution of the appropriate McKean‐Vlasov equation and that the corresponding cumulative distribution function evolves according to a nondegenerate generalized porous medium equation with convection. The large deviations rate function is provided in explicit form. This is the first instance of an LDP for interacting diffusions where the interaction occurs both through the drift and the diffusion coefficients and where the rate function can be given explicitly. In the course of the proof, we obtain new regularity results for tilted versions of such a generalized porous medium equation.© 2016 Wiley Periodicals, Inc.  相似文献   

9.
This article attempts to lay a proper foundation for studying asymptotic properties of nonhomogeneous diffusions, extends earlier criteria for transience, recurrence, and positive recurrence, and provides sufficient conditions for the weak convergence of a shifted nonhomogeneous diffusion to a limiting stationary homogenous diffusion. A functional central limit theorem is proved for the class of positive recurrent homogeneous diffusions. Upper and lower functions for positive recurrent nonhomogeneous diffusions are also studied.  相似文献   

10.
We study the Langevin dynamics for the family of spherical p-spin disordered mean-field models of statistical physics. We prove that in the limit of system size N approaching infinity, the empirical state correlation and integrated response functions for these N-dimensional coupled diffusions converge almost surely and uniformly in time, to the non-random unique strong solution of a pair of explicit non-linear integro-differential equations intensively studied by Cugliandolo and Kurchan. Research partially supported by NSF grants #DMS-0406042, #DMS-FRG-0244323  相似文献   

11.
12.
Summary A long range contact process and a long range voter process are scaled so that the distance between sites decreases and the number of neighbors of each site increases. The approximate densities of occupied sites, under suitable tine scaling, converge to continuous space time densities which solve stochastic p.d.e.'s. For the contact process the limiting equation is the Kolmogorov-Petrovskii-Piscuinov equation driven by branching white noise. For the voter process the limiting equation is the heat equation driven by Fisher-Wright white noise.  相似文献   

13.
We consider the small mass asymptotic (Smoluchowski–Kramers approximation) for the Langevin equation with a variable friction coefficient. The friction coefficient is assumed to be vanishing within certain region. We introduce a regularization for this problem and study the limiting motion for the 1-dimensional case and a multidimensional model problem. The limiting motion is a Markov process on a projected space. We specify the generator and the boundary condition of this limiting Markov process and prove the convergence.  相似文献   

14.
Nonlocal Lotka–Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses co-exist?

We will explain how these questions relate to the so-called “constrained Hamilton–Jacobi equation” and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional.

Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation.

Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution.  相似文献   

15.
This work is concerned with diffusions with two-time scales or singularly perturbed diffusions. Asymptotic expansions of the solution of the associated Cauchy problem for parabolic partial differential equation are obtained and the desired error bounds are derived. These asymptotic expansions are then used to analyze related limit distributions of normalized integral functionals.  相似文献   

16.
We introduce a PDE approach to the large deviation principle for Hilbert space valued diffusions. It can be applied to a large class of solutions of abstract stochastic evolution equations with small noise intensities and is adaptable to some special equations, for instance to the 2D stochastic Navier–Stokes equations. Our approach uses a lot of ideas from (and in significant part follows) the program recently developed by Feng and Kurtz [J. Feng, T. Kurtz, Large Deviations for Stochastic Processes, in: Mathematical Surveys and Monographs, vol. 131, American Mathematical Society, Providence, RI, 2006]. Moreover we present easy proofs of exponential moment estimates for solutions of stochastic PDE.  相似文献   

17.
We define heavy-tailed fractional reciprocal gamma and Fisher–Snedecor diffusions by a non-Markovian time change in the corresponding Pearson diffusions. Pearson diffusions are governed by the backward Kolmogorov equations with space-varying polynomial coefficients and are widely used in applications. The corresponding fractional reciprocal gamma and Fisher–Snedecor diffusions are governed by the fractional backward Kolmogorov equations and have heavy-tailed marginal distributions in the steady state. We derive the explicit expressions for the transition densities of the fractional reciprocal gamma and Fisher–Snedecor diffusions and strong solutions of the associated Cauchy problems for the fractional backward Kolmogorov equation.  相似文献   

18.
19.
We consider optimal stopping problems with finite horizon for one-dimensional diffusions. We assume that the reward function is bounded and Borel-measurable, and we prove that the value function is continuous and can be characterized as the unique solution of a variational inequality in the sense of distributions.  相似文献   

20.

We consider a time evolution of random fields with non-negative values on the real line. Such evolution is described by an infinite dimensional stochastic differential equation of Skorokhod's type, which is a stochastic partial differential equation (SPDE) of parabolic type with reflection. We shall show the existence of the solution, and its uniqueness when the diffusion coefficient is constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号