首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对如下非线性Maxwell-Dirac系统{3Σk=1a_k(-iδ_k+K(x)Ak)u+aβu+M(x)u-K(x)A_0u=G_u(x,u),-△A_0=4πK(x)|u|~2,-△A_k=4πK(x)|a_ku),k=1,2,3进行了研究,其中x∈R~3.由于Dirac算子是上方和下方无界,相应的能量泛函是强不定的.假设非线性项满足次临界超二次的增长条件,运用强不定泛函的广义环绕定理,证明了系统驻波解的存在性.  相似文献   

2.
In this paper, we have studied the separation for the biharmonic Laplace-Beltrami differential operator\begin{equation*}Au(x)=-\Delta \Delta u(x)+V(x)u(x),\end{equation*}for all $x\in R^{n}$, in the Hilbert space $H=L_{2}(R^{n},H_{1})$ with the operator potential $V(x)\in C^{1}(R^{n},L(H_{1}))$, where $L(H_{1})$ is the space of all bounded linear operators on the Hilbert space $H_{1}$, while $\Delta \Delta u$\ is the biharmonic differential operator and\begin{equation*}\Delta u{=-}\sum_{i,j=1}^{n}\frac{1}{\sqrt{\det g}}\frac{\partial }{{\partial x_{i}}}\left[ \sqrt{\det g}g^{-1}(x)\frac{\partial u}{{\partial x}_{j}}\right]\end{equation*}is the Laplace-Beltrami differential operator in $R^{n}$. Here $g(x)=(g_{ij}(x))$ is the Riemannian matrix, while $g^{-1}(x)$ is the inverse of the matrix $g(x)$. Moreover, we have studied the existence and uniqueness Theorem for the solution of the non-homogeneous biharmonic Laplace-Beltrami differential equation $Au=-\Delta \Delta u+V(x)u(x)=f(x)$ in the Hilbert space $H$ where $f(x)\in H$ as an application of the separation approach.  相似文献   

3.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 > 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 < ∈(k) <-k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) > kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 < ρ < 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

4.
Results on finite-time blow-up of solutions to the nonlocal parabolic problem

are established. They extend some known results to higher dimensions.

  相似文献   


5.
In this paper, the existence of positive solutions of the following third-order three-point boundary value problem with $p$-Laplacian \begin{equation*} \begin{gathered} \ \ \left\{ \begin{array}{l}\displaystyle(\phi_{p}(u''(t)))''+f(t,u(t))=0,\ t\in (0,1),\u(0)=\alpha u(\eta), u(1)=\alpha u(\eta), u''(0)=0,\end{array} \right. \end{gathered} \end{equation*} is studied, where $\phi_{p}(s)=|s|^{p-2}s$, $p>1$. By using the fixed point index method, we establish sufficient conditions for the existence of at least one or at least two positive solutions for the above boundary value problem. The main result is demonstrated by providing an example as an application.  相似文献   

6.
We prove the absence of positive eigenvalues of Schrödinger operators $ H=-\Delta+V $ on Euclidean spaces $ \mathbb{R}^n $ for a certain class of rough potentials $V$. To describe our class of potentials fix an exponent $q\in[n/2,\infty]$ (or $q\in(1,\infty]$, if $n=2$) and let $\beta(q)=(2q-n)/(2q)$. For the potential $V$ we assume that $V\in L^{n/2}_{{\rm{loc}}}(\mathbb{R}^n)$ (or $V\in L^{r}_{{\rm{loc}}}(\mathbb{R}^n)$, $r>1$, if $n=2$) and$\begin{equation*}$$\lim_{R\to\infty}R^{\beta(q)}||V||_{L^q(R\leq |x|\leq 2R)}=0\,.$$\end{equation*}$Under these assumptions we prove that the operator $H$ does not admit positive eigenvalues. The case $q=\infty$ was considered by Kato [K]. The absence of positive eigenvalues follows from a uniform Carleman inequality of the form$\begin{equation*}$$||W_m u||_{l^a(L^{p(q)})(\mathbb R^n)}\leq C_q||W_m|x|^{\beta(q)}(\Delta+1)u||_{l^a(L^{p(q)})(\mathbb{R}^n)}$$\end{equation*}$for all smooth compactly supported functions $u$ and a suitable sequence of weights $W_m$, where $p(q)$ and $p(q)$ are dual exponents with the property that $1/p(q)-1/p(q)=1/q$.  相似文献   

7.
In this paper, the authors aim at proving two existence results of fractional differential boundary value problems of the form(P_(a,b)){D~αu(x) + f(x, u(x)) = 0, x ∈(0, 1),u(0) = u(1) = 0, D~(α-3)u(0) = a, u(1) =-b,where 3 α≤ 4, Dαis the standard Riemann-Liouville fractional derivative and a, b are nonnegative constants. First the authors suppose that f(x, t) =-p(x)t~σ, with σ∈(-1, 1)and p being a nonnegative continuous function that may be singular at x = 0 or x = 1and satisfies some conditions related to the Karamata regular variation theory. Combining sharp estimates on some potential functions and the Sch¨auder fixed point theorem, the authors prove the existence of a unique positive continuous solution to problem(P_(0,0)).Global estimates on such a solution are also obtained. To state the second existence result, the authors assume that a, b are nonnegative constants such that a + b 0 and f(x, t) = tφ(x, t), with φ(x, t) being a nonnegative continuous function in(0, 1)×[0, ∞) that is required to satisfy some suitable integrability condition. Using estimates on the Green's function and a perturbation argument, the authors prove the existence and uniqueness of a positive continuous solution u to problem(P_(a,b)), which behaves like the unique solution of the homogeneous problem corresponding to(P_(a,b)). Some examples are given to illustrate the existence results.  相似文献   

8.
本文研究一类二阶齐次线性微分方程f"+A_1(z)e~(P(z))f'+A_0(z)e~(Q(z))f=0,解的增长性,其中P(z)=az~n,Q(z)=bz~n,ab≠0,a=cb(c1),A_j(z)(j=0,1)是非零多项式,证明了该方程的每个非零解满足σ(f)=∞并且σ_2(f)=n.  相似文献   

9.
The forms of all semisymmetric, branching, multidimensional measures of inset information on open domains are determined. This is done for both the complete and the possibly incomplete partition cases. The key to these results is to find the general solution of the functional equation
  相似文献   

10.
We show that any nondegenerate vector field u in \begin{align*}L^{\infty}(\Omega, \mathbb{R}^N)\end{align*}, where Ω is a bounded domain in \begin{align*}\mathbb{R}^N\end{align*}, can be written as \begin{align*}u(x)= \nabla_1 H(S(x), x)\quad {\text for a.e.\ x \in \Omega}\end{align*}}, where S is a measure‐preserving point transformation on Ω such that \begin{align*}S^2=I\end{align*} a.e. (an involution), and \begin{align*}H: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}\end{align*} is a globally Lipschitz antisymmetric convex‐concave Hamiltonian. Moreover, u is a monotone map if and only if S can be taken to be the identity, which suggests that our result is a self‐dual version of Brenier's polar decomposition for the vector field as \begin{align*}u(x)=\nabla \phi (S(x))\end{align*}, where ? is convex and S is a measure‐preserving transformation. We also describe how our polar decomposition can be reformulated as a (self‐dual) mass transport problem. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
In this paper, we initiate the oscillation theory for $h$-fractional difference equations of the form \begin{equation*} \begin{cases} _{a}\Delta^{\alpha}_{h}x(t)+r(t)x(t)=e(t)+f(t,x(t)),\ \ \ t\in\mathbb{T}_{h}^{a},\ \ 1<\alpha<2,\x(a)=c_{0},\ \ \Delta_{h}x(a)=c_{1},\ \ \ c_{0}, c_{1}\in\mathbb{R}, \end{cases} \end{equation*} where $_{a}\Delta^{\alpha}_{h}$ is the Riemann-Liouville $h$-fractional difference of order $\alpha,$ $\mathbb{T}_{h}^{a}:=\{a+kh, k\in\mathbb{Z^{+}}\cup\{0\}\},$ and $a\geqslant0,$ $h>0.$ We study the oscillation of $h$-fractional difference equations with Riemann-Liouville derivative, and obtain some sufficient conditions for oscillation of every solution. Finally, we give an example to illustrate our main results.  相似文献   

12.
Let {X, X_k : k ≥ 1} be a sequence of independent and identically distributed random variables with a common distribution F. In this paper, the authors establish some results on the local precise large and moderate deviation probabilities for partial sums S_n =sum from i=1 to n(X_i) in a unified form in which X may be a random variable of an arbitrary type,which state that under some suitable conditions, for some constants T 0, a and τ 1/2and for every fixed γ 0, the relation P(S_n- na ∈(x, x + T ]) ~nF((x + a, x + a + T ]) holds uniformly for all x ≥γn~τ as n→∞, that is, P(Sn- na ∈(x, x + T ]) lim sup- 1 = 0.n→+∞x≥γnτnF((x + a, x + a + T ])The authors also discuss the case where X has an infinite mean.  相似文献   

13.
In this paper, we aim to investigate the difference equation \begin{align*} \Delta^{2}y(t-1)+|y(t)|=0, \ \ \ \ \ t\in[1,T]_{\mathbb{Z}} \end{align*} with different boundary conditions $y(0)=0$ or $\Delta y(0)=0$ and $y(T+1)=B$ or $\Delta y(T)=B$,\ where\ $T\geq 1$ is an integer and $B\in\mathbb{R}$. We will show that how the values of $T$ and $B$ influence the existence and uniqueness of the solutions to the about problem. In details, for the different problems, the $TB$-plane explicitly divided into different parts according to the number of the solutions to the above problems. These parts of $TB$-plane for the value of $T$ and $B$ guarantee the uniqueness, the existence and the nonexistence of solutions respectively.  相似文献   

14.
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εh_l~1(x) + ε~2h_l~2(x),y=-x- ε(f_n~1(x)y~(2p+1) + g_m~1(x)) + ∈~2(f_n~2(x)y~(2p+1) + g_m~2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials h_l~1 and h_l~2 have degree l;f_n~1and f_n~2 have degree n;and g_m~1,g_m~2 have degree m.p ∈ N and[·]denotes the integer part function.  相似文献   

15.
This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: c(x, y) = inf x(0)=x x(1)=y u∈U∫_0~1 L(x(s), u(x(s), s), s)ds, where U is a control set, and x satisfies the ordinary equation x(s) = f(x(s), u(x(s), s)).It is proved that under the condition that the initial measure μ0 is absolutely continuous w.r.t. the Lebesgue measure, the Monge problem has a solution, and the optimal transport map just walks along the characteristic curves of the corresponding Hamilton-Jacobi equation:V_t(t, x) + sup u∈UV_x(t, x), f(x, u(x(t), t), t)-L(x(t), u(x(t), t), t) = 0,V(0, x) = Φ0(x).  相似文献   

16.
In this paper, by using Krasnoselskii''s fixed-point theorem, some sufficient conditions of existence of positive solutions for the following fourth-order nonlinear Sturm-Liouville eigenvalue problem:\begin{equation*}\left\{\begin{array}{lll} \frac{1}{p(t)}(p(t)u'')''(t)+ \lambda f(t,u)=0, t\in(0,1), \\ u(0)=u(1)=0, \\ \alpha u''(0)- \beta \lim_{t \rightarrow 0^{+}} p(t)u''(t)=0, \\ \gamma u''(1)+\delta\lim_{t \rightarrow 1^{-}} p(t)u''(t)=0, \end{array}\right.\end{equation*} are established, where $\alpha,\beta,\gamma,\delta \geq 0,$ and $~\beta\gamma+\alpha\gamma+\alpha\delta >0$. The function $p$ may be singular at $t=0$ or $1$, and $f$ satisfies Carath\''{e}odory condition.  相似文献   

17.
Let K be an algebraic number field of finite degree over the rational field Q,and a K(n) the number of integral ideals in K with norm n. When K is a Galois extension over Q, many authors contribute to the integral power sums of a K(n),Σn≤x a K(n)~l, l = 1, 2, 3, ···.This paper is interested in the distribution of integral ideals concerning different number fields. The author is able to establish asymptotic formulae for the convolution sum Σn≤x aK_1(n~j)~laK_2(n~j)~l, j = 1, 2, l = 2, 3, ···,where K_1 and K_2 are two different quadratic fields.  相似文献   

18.
The aim of this study is to investigate the existence of infinitely many weak solutions for the $(p(x), q(x))$-Kirchhoff Neumann problem described by the following equation : \begin{equation*} \left\{\begin{array}{ll} -\left(a_{1}+a_{2}\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(\cdot)}u-\left(b_{1}+b_{2}\int_{\Omega}\frac{1}{q(x)}|\nabla u|^{q(x)}dx\right)\Delta_{q(\cdot)}u\+\lambda(x)\Big(|u|^{p(x)-2} u+|u|^{q(x)-2} u\Big)= f_1(x,u)+f_2(x,u) &\mbox{ in } \Omega, \\frac{\partial u}{\partial \nu} =0 \quad &\mbox{on} \quad \partial\Omega.\end{array}\right. \end{equation*} By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned problem.  相似文献   

19.
Let $D_n $ (${\cal O}_n$) be the semigroup of all finite order-decreasing (order-preserving) full transformations of an $n$-element chain, and let $D(n,r) = \{\alpha\in D_n: |\mbox{Im}\alpha| \leq r\}$ (${\cal C}(n,r) = D(n,r)\cap {\cal O}_n)$ be the two-sided ideal of $D_n $ ($D_n \cap {\cal O}_n$). Then it is shown that for $r \geq 2$, the Rees quotient semigroup $DP_r(n)= D(n,r) / D(n,r-1)$ (${\cal C}P_r(n)= {\cal C}(n,r)/{\cal C} (n,r-1)$) is an ${\cal R}$-trivial (${\cal J}$-trivial) idempotent-generated 0*-bisimple primitive abundant semigroup. The order of ${\cal C}P_r(n)$ is shown to be $1+ \left(\begin{array}{c} n-1 \\ r-1 \end{array} \right) \left(\begin{array}{c} n \\ r \end{array} \right)/(n-r+1)$. Finally, the rank and idempotent ranks of ${\cal C}P_r(n)\,(r<n)$ are both shown to be equal to $\left(\begin{array}{c} n-1 \\ r-1 \end{array} \right)$.  相似文献   

20.
In this paper, we are concerned with the existence criteria for positive solutions of the following nonlinear arbitrary order fractional differential equations with deviating argument
$\left \{{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2, \right .$\left \{\begin{array}{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2,\end{array} \right .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号