首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, a chaos-enhanced bat algorithm is proposed to tackle the global optimization problems. Bat algorithm is a relatively new stochastic optimizer inspired by the echolocation behavior of bats in nature. Due to its effectiveness, it has been applied to many fields such as engineering design, feature selection, and machine learning. However, the classical approach is often prone to falling into local optima. This paper proposes an enhanced bat algorithm to alleviate this problem observed in the original algorithm. The proposed method controls the steps of chaotic mapping by a threshold and synchronizes the velocity of agents using a velocity inertia weight. These mechanisms are designed to boost the stability and convergence speed of the bat algorithm, instantly. Eighteen well-established and the state-of-the-art meta-heuristic approaches are considered to validate the effectiveness of the developed algorithm. Experimental results reveal that the proposed chaos-enhanced bat algorithm is not only superior to the well-established algorithms such as the original method but also the latest improved approaches. Also, the proposed method is successfully applied to I-beam design problems, welded beam design, and pressure vessel design. The results show that chaos-enhanced bat algorithm can deal with unconstrained and constrained feature spaces, effectively.  相似文献   

2.
Traditional c-means clustering partitions a group of objects into a number of non-overlapping sets. Rough sets provide more flexible and objective representation than classical sets with hard partition and fuzzy sets with subjective membership function for a given dataset. Rough c-means clustering and its extensions were introduced and successfully applied in many real life applications in recent years. Each cluster is represented by a reasonable pair of lower and upper approximations. However, the most available algorithms pay no attention to the influence of the imbalanced spatial distribution within a cluster. The limitation of the mean iterative calculation function, with the same weight for all the data objects in a lower or upper approximation, is analyzed. A hybrid imbalanced measure of distance and density for the rough c-means clustering is defined, and a modified rough c-means clustering algorithm is presented in this paper. To evaluate the proposed algorithm, it has been applied to several real world data sets from UCI. The validity of this algorithm is demonstrated by the results of comparative experiments.  相似文献   

3.
Convex clustering, a convex relaxation of k-means clustering and hierarchical clustering, has drawn recent attentions since it nicely addresses the instability issue of traditional nonconvex clustering methods. Although its computational and statistical properties have been recently studied, the performance of convex clustering has not yet been investigated in the high-dimensional clustering scenario, where the data contains a large number of features and many of them carry no information about the clustering structure. In this article, we demonstrate that the performance of convex clustering could be distorted when the uninformative features are included in the clustering. To overcome it, we introduce a new clustering method, referred to as Sparse Convex Clustering, to simultaneously cluster observations and conduct feature selection. The key idea is to formulate convex clustering in a form of regularization, with an adaptive group-lasso penalty term on cluster centers. To optimally balance the trade-off between the cluster fitting and sparsity, a tuning criterion based on clustering stability is developed. Theoretically, we obtain a finite sample error bound for our estimator and further establish its variable selection consistency. The effectiveness of the proposed method is examined through a variety of numerical experiments and a real data application. Supplementary material for this article is available online.  相似文献   

4.
In recent years, the demand for indoor location-based services has gradually received greater attention. The presence of multipath interference has a tendency to interfere with traditional algorithms calculated based on received signal strength (RSS). The application of virtual tags can greatly reduce deployment costs and enable greater environmental adaptability. However, an excess of ineffectively filtered virtual tags will only lead to greater error in calculation. Therefore, virtual tags are combined with a two-step clustering method to replace the concept of signal hotpoint intersections due to the mutual interdependence of data in space and the influence of neighboring objects. This study improved a two-step location algorithm that combines the advantages of virtual tags and two-step clustering analysis, called clustering-based localization algorithm, offering significant improvement over most traditional localization algorithms. RSS are no longer used as a basis for clustering, and are replaced by the combination of signal and coordination pattern. Two steps of cluster analysis are performed during the filtering process. The first step utilizes the tags’ signals to perform clustering. The second step incorporates tags’ coordinate for filtering. As the clustering-based localization process considers the interactive relationship between coordinate data, it achieves superior results compared to those produced via methods that only use signal strength to select neighboring solutions. This study then constructs a wireless sensor network and assesses the effectiveness of the algorithm.  相似文献   

5.
探讨基因表达数据的聚类分析方法,结合一种聚类结果的评判准则,应用于胎儿小脑基因表达数据,得到了最优的聚类结果,并做出了生物学解释.利用Matlab软件进行了仿真,利用模糊聚类Xie-Beni指数得到了最优聚类数,并把每一类对应的基因标号输出到txt文件,最后进行生物学解释.得到的小脑基因最优聚类数为3类,与生物学意义比较吻合,各类中的基因功能接近.基于FCM算法的基因模糊聚类是有效的,结果具有一定生物学意义,能对生物学基因聚类有一定指导作用.  相似文献   

6.
针对传统DBSCAN算法对高维数据集聚类效果不佳且参数的选取敏感问题,提出一种新的基于相似性度量的改进DBSCAN算法.该算法构造了测地距离和共享最近邻的数据点之间的相似度矩阵,克服欧式距离对高维数据的局限性,更好地刻画数据集的真实情况.通过分析数据的分布特征来自适应确定Eps和MinPts参数.实验结果表明,所提GS-DBSCAN算法能够有效地对复杂分布的数据进行聚类,且在高维数据的聚类准确率高于对比算法,验证了算法的准确性和可行性.  相似文献   

7.
This paper presents a multiobjective analog/RF circuit sizing tool using an improved brain storm optimization (IMBSO) algorithm with the purpose of analyzing the tradeoffs between competing performance specifications of analog/RF circuit block. A number of improvements are incorporated into IMBSO algorithm at different steps. At first, the clustering step of IMBSO algorithm is augmented with k-means\(++\) seeding technique to select the initial cluster centroids while clustering using k-means clustering technique. As a second improvement, the proposed IMBSO algorithm makes use of random probabilistic decision-making of river formation dynamics scheme to select optimal cluster centroids during population generation step. As a third improvement, an adaptive mutation operator is incorporated inside the IMBSO algorithm to generate new population. Finally, two separate constraint handling techniques are employed to handle both boundary and functional constraints during analog/RF circuit optimization. The performance of the proposed IMBSO algorithm is demonstrated in finding optimal Pareto fronts among different performance specifications of a two-stage operational amplifier circuit, a folded cascode amplifier circuit and a low noise amplifier circuit.  相似文献   

8.
《Fuzzy Sets and Systems》2007,158(19):2095-2117
Cluster analysis aims at identifying groups of similar objects, and helps to discover distribution of patterns and interesting correlations in large data sets. Especially, fuzzy clustering has been widely studied and applied in a variety of key areas and fuzzy cluster validation plays a very important role in fuzzy clustering. This paper introduces the fundamental concepts of cluster validity, and presents a review of fuzzy cluster validity indices available in the literature. We conducted extensive comparisons of the mentioned indices in conjunction with the Fuzzy C-Means clustering algorithm on a number of widely used data sets, and make a simple analysis of the experimental results.  相似文献   

9.
Feature Selection (FS) is an important pre-processing step in data mining and classification tasks. The aim of FS is to select a small subset of most important and discriminative features. All the traditional feature selection methods assume that the entire input feature set is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with time as new features stream in. A critical challenge for online streaming feature selection (OSFS) is the unavailability of the entire feature set before learning starts. Several efforts have been made to address the OSFS problem, however they all need some prior knowledge about the entire feature space to select informative features. In this paper, the OSFS problem is considered from the rough sets (RS) perspective and a new OSFS algorithm, called OS-NRRSAR-SA, is proposed. The main motivation for this consideration is that RS-based data mining does not require any domain knowledge other than the given dataset. The proposed algorithm uses the classical significance analysis concepts in RS theory to control the unknown feature space in OSFS problems. This algorithm is evaluated extensively on several high-dimensional datasets in terms of compactness, classification accuracy, run-time, and robustness against noises. Experimental results demonstrate that the algorithm achieves better results than existing OSFS algorithms, in every way.  相似文献   

10.
Close formation flight of swarm unmanned aerial vehicles (UAVs) has drawn much attention from scholars due to its significant importance in many aspects. In this paper, we focus on an advanced controller design for swarm UAV close formation based on a novel bio-inspired algorithm, i.e., metric-distance brain storm optimization (MDBSO). The proposed method utilizes the brain storm optimization (BSO) which has been extensively adopted in complicated systems with great performances and modifies its basic operators to formulate the formation flight controller design. The original clustering operator in BSO is replaced by a fresh clustering method based on metric distances, while the individual updating operator utilizes Lévy distribution to extend search steps to fit into the metric searching regions. Then the proposed algorithm is applied to optimize the benchmark controller in swarm UAV close formation to enhance the tracking performances under complicated circumstances. Simulation results demonstrate that our approach is more superior in stable configuration of swarm UAV close formations by comparing with several generic methods.  相似文献   

11.
Feature selection is a challenging problem in many areas such as pattern recognition, machine learning and data mining. Rough set theory, as a valid soft computing tool to analyze various types of data, has been widely applied to select helpful features (also called attribute reduction). In rough set theory, many feature selection algorithms have been developed in the literatures, however, they are very time-consuming when data sets are in a large scale. To overcome this limitation, we propose in this paper an efficient rough feature selection algorithm for large-scale data sets, which is stimulated from multi-granulation. A sub-table of a data set can be considered as a small granularity. Given a large-scale data set, the algorithm first selects different small granularities and then estimate on each small granularity the reduct of the original data set. Fusing all of the estimates on small granularities together, the algorithm can get an approximate reduct. Because of that the total time spent on computing reducts for sub-tables is much less than that for the original large-scale one, the algorithm yields in a much less amount of time a feature subset (the approximate reduct). According to several decision performance measures, experimental results show that the proposed algorithm is feasible and efficient for large-scale data sets.  相似文献   

12.
A minimax feature selection problem for constructing a classifier using support vector machines is considered. Properties of the solutions of this problem are analyzed. An improvement of the saddle point search algorithm based on extending the bound for the step parameter is proposed. A new nondifferential optimization algorithm is developed that, together with the saddle point search algorithm, forms a hybrid feature selection algorithm. The efficiency of the algorithm for computing Dykstra’s projections as applied for the feature selection problem is experimentally estimated.  相似文献   

13.
Digital circuits have grown exponentially in their sizes over the past decades. To be able to automate the design of these circuits, efficient algorithms are needed. One of the challenging stages of circuit design is the physical design where the physical locations of the components of a circuit are determined. Coarsening or clustering algorithms have become popular with physical designers due to their ability to reduce circuit sizes in the intermediate design steps such that the design can be performed faster and with higher quality. In this paper, a new clustering algorithm based on the algebraic multigrid (AMG) technique is presented. In the proposed algorithm, AMG is used to assign weights to connections between cells of a circuit and find cells that are best suited to become the initial cells for clusters, seed cells. The seed cells and the weights between them and the other cells are then used to cluster the cells of a circuit. The analysis of the proposed algorithm proves linear-time complexity, O(N), where N is the number of pins in a circuit. The numerical experiments demonstrate that AMG-based clustering can achieve high quality clusters and improve circuit placement designs with low computational cost.  相似文献   

14.
The partitioning clustering is a technique to classify n objects into k disjoint clusters, and has been developed for years and widely used in many applications. In this paper, a new overlapping cluster algorithm is defined. It differs from traditional clustering algorithms in three respects. First, the new clustering is overlapping, because clusters are allowed to overlap with one another. Second, the clustering is non-exhaustive, because an object is permitted to belong to no cluster. Third, the goals considered in this research are the maximization of the average number of objects contained in a cluster and the maximization of the distances among cluster centers, while the goals in previous research are the maximization of the similarities of objects in the same clusters and the minimization of the similarities of objects in different clusters. Furthermore, the new clustering is also different from the traditional fuzzy clustering, because the object–cluster relationship in the new clustering is represented by a crisp value rather than that represented by using a fuzzy membership degree. Accordingly, a new overlapping partitioning cluster (OPC) algorithm is proposed to provide overlapping and non-exhaustive clustering of objects. Finally, several simulation and real world data sets are used to evaluate the effectiveness and the efficiency of the OPC algorithm, and the outcomes indicate that the algorithm can generate satisfactory clustering results.  相似文献   

15.
An appropriate distance is an essential ingredient in various real-world learning tasks. Distance metric learning proposes to study a metric, which is capable of reflecting the data configuration much better in comparison with the commonly used methods. We offer an algorithm for simultaneous learning the Mahalanobis like distance and K-means clustering aiming to incorporate data rescaling and clustering so that the data separability grows iteratively in the rescaled space with its sequential clustering. At each step of the algorithm execution, a global optimization problem is resolved in order to minimize the cluster distortions resting upon the current cluster configuration. The obtained weight matrix can also be used as a cluster validation characteristic. Namely, closeness of such matrices learned during a sample process can indicate the clusters readiness; i.e. estimates the true number of clusters. Numerical experiments performed on synthetic and on real datasets verify the high reliability of the proposed method.  相似文献   

16.
We present a fast and robust nonconvex optimization approach for Fuzzy C-Means (FCM) clustering model. Our approach is based on DC (Difference of Convex functions) programming and DCA (DC Algorithms) that have been successfully applied in various fields of applied sciences, including Machine Learning. The FCM model is reformulated in the form of three equivalent DC programs for which different DCA schemes are investigated. For accelerating the DCA, an alternative FCM-DCA procedure is developed. Experimental results on several real world problems that include microarray data illustrate the effectiveness of the proposed algorithms and their superiority over the standard FCM algorithm, with respect to both running-time and accuracy of solutions.  相似文献   

17.
硬聚类和模糊聚类的结合——双层FCM快速算法   总被引:3,自引:0,他引:3  
模糊c均值(FCM)聚类算法在模式识别领域中得到了广泛的应用,但FCM算法在大数据集的情况下需要大量的CPU时间,令用户感到十分不便,提高算法的速度是一个急待解决的问题。本文提出的双层FCM聚类算法是一种快速算法,它体现了硬聚类和模糊聚类的结合,以硬聚类的结果对模糊聚类的初始值进行指导,从而明显地缩短了迭代过程。双层FCM算法所用的CPU时间仅为FCM算法的十三分之一,因而具有很强的实用价值。  相似文献   

18.
The interest in variable selection for clustering has increased recently due to the growing need in clustering high-dimensional data. Variable selection allows in particular to ease both the clustering and the interpretation of the results. Existing approaches have demonstrated the importance of variable selection for clustering but turn out to be either very time consuming or not sparse enough in high-dimensional spaces. This work proposes to perform a selection of the discriminative variables by introducing sparsity in the loading matrix of the Fisher-EM algorithm. This clustering method has been recently proposed for the simultaneous visualization and clustering of high-dimensional data. It is based on a latent mixture model which fits the data into a low-dimensional discriminative subspace. Three different approaches are proposed in this work to introduce sparsity in the orientation matrix of the discriminative subspace through \(\ell _{1}\) -type penalizations. Experimental comparisons with existing approaches on simulated and real-world data sets demonstrate the interest of the proposed methodology. An application to the segmentation of hyperspectral images of the planet Mars is also presented.  相似文献   

19.
城市气温是对城市气候特性评价的一个重要指标.提出核概率聚类算法并将其应用于城市气温的模式分类中,以此寻找城市发展上的共同点.该算法在概率聚类算法上引入了核学习方法的思想,能够很好地处理噪音和孤立点,实现更为准确的聚类.实验结果表明,与相关聚类算法相比,核概率聚类算法聚类效果好,且算法能够很快地收敛.  相似文献   

20.
The aim of this paper is to enlarge the usual domain of cluster analysis. A procedure for clustering time varying data is presented which takes into account the time dimension with its intrinsic properties.

This procedure consists of two steps. In the first step a dissimilarity between variables is defined and the dissimilarity matrix is calculated for each unit separately. In the second step the dissimilarity between units is calculated in terms of the dissimilarity matrices defined in the first step. The dissimilarity matrix obtained is the base for a suitable clustering method.

The procedure is illustrated on an empirical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号