首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The embedding of the anisotropic spaces $B_{p_1 , \ldots ,p_n ,\theta }^{\omega _1 , \ldots ,\omega _n } \left( {\mathbb{R}^n } \right)$ with mixed norm is studied. We establish some necessary and sufficient conditions of the embedding $B_{p_1 , \ldots ,p_n ,\theta }^{\omega _1 , \ldots ,\omega _n } \left( {\mathbb{R}^n } \right) \subset L^{q_1 , \ldots ,q_n } \left( {\mathbb{R}^n } \right)$ .  相似文献   

2.
To investigate localization in one-dimensional quasi-periodic nonlinear systems, we consider the Schrödinger equation $${\rm i}\dot{q}_n+\epsilon(q_{n+1}+q_{n-1})+V(n\tilde{\alpha}+x)q_n+ |q_n|^2q_n=0,\quad n\in\mathbb{Z},$$ as a model, with V a nonconstant real-analytic function on ${\mathbb{R}/\mathbb{Z}}$ , and ${\tilde{\alpha}}$ satisfying a certain Diophantine condition. It is shown that, if ${\epsilon}$ is sufficiently small, then for a.e. ${x\in\mathbb{R}/\mathbb{Z}}$ , dynamical localization is maintained for “typical” solutions in a quasi-periodic time-dependent way.  相似文献   

3.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

4.
We consider integral functionals in which the density has growth p i with respect to ${\frac{\partial u}{\partial x_i}}$ , like in $$\int\limits_{\Omega}\left( \left| \frac{\partial u}{\partial x_1}(x) \right|^{p_1} + \left|\frac{\partial u}{\partial x_2}(x)\right|^{p_2} + \cdots + \left|\frac{\partial u}{\partial x_n}(x) \right|^{p_n} \right) dx.$$ We show that higher integrability of the boundary datum forces minimizer to be more integrable.  相似文献   

5.
Christian Delhommé 《Order》2006,23(2-3):221-233
We observe that, given a poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ and a finite covering ${\user1{\mathcal{R}}} = {\user1{\mathcal{R}}}_{1} \cup \cdots \cup {\user1{\mathcal{R}}}_{n} $ of its ordering, the height of the poset does not exceed the natural product of the heights of the corresponding sub-relations: $$\mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}} \right)} \leqslant \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{1} } \right)} \otimes \cdots \otimes \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{n} } \right)}.$$ Conversely for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, every poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ of height at most $\xi_1\otimes\cdots\otimes\xi_n$ admits a partition ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ such that each ${\left( {E,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at most $\xi_k$ . In particular for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, the ordinal $$\xi _{1} \underline{ \otimes } \cdots \underline{ \otimes } \xi _{n} : = \sup {\left\{ {{\left( {\xi ^{\prime }_{1} \otimes \cdots \otimes \xi ^{\prime }_{n} } \right)} + 1:\xi ^{\prime }_{1} < \xi _{1} , \cdots ,\xi ^{\prime }_{n} < \xi _{n} } \right\}}$$ is the least $\xi$ for which the following partition relation holds $$\mathfrak{H}_{\xi } \to {\left( {\mathfrak{H}_{{\xi _{1} }} , \cdots ,\mathfrak{H}_{{\xi _{n} }} } \right)}^{2} $$ meaning: for every poset ${\left( {A,{\user1{\mathcal{R}}}} \right)}$ of height at least $\xi$ and every finite covering ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ , there is a $k$ for which the relation ${\left( {A,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at least $\xi_k$ . The proof will rely on analogue properties of vertex coverings w.r.t. the natural sum.  相似文献   

6.
We consider a class of Kolmogorov equation $$Lu={\sum^{p_0}_{i,j=1}{\partial_{x_i}}(a_{ij}(z){\partial_{x_j}}u)}+{\sum^{N}_{i,j=1}b_{ij}x_{i}{\partial_{x_j}}u-{\partial_t}u}={\sum^{p_0}_{j=1}{\partial_{x_j}}F_{j}(z)}$$ in a bounded open domain ${\Omega \subset \mathbb{R}^{N+1}}$ , where the coefficients matrix (a ij (z)) is symmetric uniformly positive definite on ${\mathbb{R}^{p_0} (1 \leq p_0 < N)}$ . We obtain interior W 1,p (1 < p < ∞) regularity and Hölder continuity of weak solutions to the equation under the assumption that coefficients a ij (z) belong to the ${VMO_L\cap L^\infty}$ and ${({b_{ij}})_{N \times N}}$ is a constant matrix such that the frozen operator ${L_{z_0}}$ is hypoelliptic.  相似文献   

7.
It is a result by Lacey and Thiele (Ann. of Math. (2) 146(3):693–724, 1997; ibid. 149(2):475–496, 1999) that the bilinear Hilbert transform maps $L^{p_{1}}(\mathbb{R}) \times L^{p_{2}}(\mathbb{R}) $ into $L^{p_{3}}(\mathbb{R})$ whenever (p 1,p 2,p 3) is a Hölder tuple with p 1,p 2>1 and $p_{3}>\frac{2}{3}$ . We study the behavior of the quartile operator, which is the Walsh model for the bilinear Hilbert transform, when $p_{3}=\frac{2}{3}$ . We show that the quartile operator maps $L^{p_{1}}(\mathbb{R}) \times L^{p_{2}}(\mathbb{R}) $ into $L^{\frac{2}{3},\infty}(\mathbb{R})$ when p 1,p 2>1 and one component is restricted to subindicator functions. As a corollary, we derive that the quartile operator maps $L^{p_{1}}(\mathbb{R}) \times L^{p_{2},\frac{2}{3}}(\mathbb{R}) $ into $L^{\frac{2}{3},\infty}(\mathbb{R})$ . We also provide weak type estimates and boundedness on Orlicz-Lorentz spaces near p 1=1,p 2=2 which improve, in the Walsh case, the results of Bilyk and Grafakos (J. Geom. Anal. 16 (4):563–584, 2006) and Carro et al. (J. Math. Anal. Appl. 357(2):479–497, 2009). Our main tool is the multi-frequency Calderón-Zygmund decomposition from (Nazarov et al. in Math. Res. Lett. 17(3):529–545, 2010).  相似文献   

8.
Given X,Y two ${\mathbb{Q}}$ -vector spaces, and f : XY, we study under which conditions on the sets ${B_{k} \subseteq X, k=1,\ldots,s}$ , if ${\Delta_{h_1h_2 \cdots h_s}f(x) = 0}$ for all ${x \in X}$ and ${h_k \in B_k, k = 1,2,\ldots,s}$ , then ${\Delta_{h_1h_2\cdots h_{s}}f(x) = 0}$ for all ${(x,h_{1},\ldots,h_{s}) \in X^{s+1}}$ .  相似文献   

9.
This paper shows that if μ 1 , . . . , μ 5 are nonzero real numbers, not all negative, at least one of μ j $ \left( {1\leqslant j\leqslant 5} \right) $ is irrational, and k is a positive integer, then there exist infinitely many primes p 1 , . . . , p 5 , p such that $ \left[ {{\mu_1}p_1^3+\cdots +{\mu_5}p_5^3} \right]=kp $ . In particular, $ \left[ {{\mu_1}p_1^3+\cdots +{\mu_5}p_5^3} \right] $ represents infinitely many primes.  相似文献   

10.
Let p i be prime numbers. In this paper, it is proved that for any integer k?R5, with at most $O\big(N^{1-\frac{1}{3k\times2^{k-2}}+\varepsilon}\big)$ exceptions, all positive even integers up to N can be expressed in the form $p_{2}^{2}+p_{3}^{3}+p_{5}^{5}+p_{k}^{k}$ . This improves the result $O\big(\frac{N}{\log^{c}N}\big)$ for some c>0 due to Lu and Shan [12], and it is a generalization for a series of results of Ren and Tsang [15], [16] and Bauer [1?C4] for the problem in the form $p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ . This method can also be used for some other similar forms.  相似文献   

11.
In this paper, we are able to sharpen Hua??s result by proving that almost all integers satisfying some necessary congruence conditions can be represented as $$N=p_1^3+ \cdots+p_s^3 \quad \mbox{with } \biggl \vert p_j-\sqrt[3]{\frac {N}{s}}\biggr \vert \leqslant U, j=1,\ldots, s, $$ where p j are primes and $U=N^{\frac{1}{3}-\delta_{s}+\varepsilon }$ with $\delta_{s}=\frac{s-4}{6s+72}$ , where s=5,6,7,8.  相似文献   

12.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

13.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

14.
In this paper wellposedness is proved for a diagonal quasilinear hyperbolic system containing integral quadratic and Lipschitz continuous terms which prevent from looking for classical solutions in Sobolev spaces. It is the hyperbolic part of the system introduced in [Selvaduray and Fujita Yashima on Atti dell’Accademia delle Scienze di Torino 2011] as a model for air motion in ${\mathbf{R}^3}$ including water phase transitions. Unknown functions are: the densities ρ of dry air, π of water vapor, σ and ν of water in the liquid and solid state, dependent also on the mass m of the droplets or ice particles. Air velocity v and temperature T are assumed to be known. Solutions (ρ, π, σ, ν) lie in ${L^\infty(]0,\tau^*[; W^{1,\infty}(\Omega))^2 \times L^\infty(]0,\tau^*[; W^{1,\infty}(\Omega^+))^2}$ , where ${\Omega^+ = \Omega \times]0, +\infty[,\Omega \subset \mathbf{R}^3}$ is open and bounded, and τ* is sufficiently small; they depend continuously on initial data, temperature and velocities, which are tangent to ${\partial\Omega}$ ; they lie also in ${W^{1,q}(]0,\tau^*[;L^\infty(\Omega))^2 \times\,W^{1,q}(]0,\tau^*[;L^\infty(\Omega^+))^2}$ , where ${q \in [1, \infty]}$ .  相似文献   

15.
For a symmetric function F, the eigen-operator Δ F acts on the modified Macdonald basis of the ring of symmetric functions by $\Delta_{F} \tilde{H}_{\mu}= F[B_{\mu}] \tilde{H}_{\mu}$ . In a recent paper (Int. Math. Res. Not. 11:525–560, 2004), J. Haglund showed that the expression $\langle\Delta_{h_{J}} E_{n,k}, e_{n}\rangle$ q,t-enumerates the parking functions whose diagonal word is in the shuffle 12?J∪∪J+1?J+n with k of the cars J+1,…,J+n in the main diagonal including car J+n in the cell (1,1) by t area q dinv. In view of some recent conjectures of Haglund–Morse–Zabrocki (Can. J. Math., doi:10.4153/CJM-2011-078-4, 2011), it is natural to conjecture that replacing E n,k by the modified Hall–Littlewood functions $\mathbf{C}_{p_{1}}\mathbf{C}_{p_{2}}\cdots\mathbf{C}_{p_{k}} 1$ would yield a polynomial that enumerates the same collection of parking functions but now restricted by the requirement that the Dyck path supporting the parking function touches the diagonal according to the composition p=(p 1,p 2,…,p k ). We prove this conjecture by deriving a recursion for the polynomial $\langle\Delta_{h_{J}} \mathbf{C}_{p_{1}}\mathbf{C}_{p_{2}}\cdots \mathbf{C}_{p_{k}} 1 , e_{n}\rangle $ , using this recursion to construct a new $\operatorname{dinv}$ statistic (which we denote $\operatorname{ndinv}$ ), then showing that this polynomial enumerates the latter parking functions by $t^{\operatorname{area}} q^{\operatorname{ndinv}}$ .  相似文献   

16.
In this paper, the quantum error-correcting codes are generalized to the inhomogenous quantum-state space $ \mathbb{C}^{q_1 } \otimes \mathbb{C}^{q_2 } \otimes \cdots \otimes \mathbb{C}^{q_n } $ , where q i (1 ? i ? n) are arbitrary positive integers. By attaching an abelian group A i of order q i to the space Cqi $ \mathbb{C}^{q_1 } \left( {1 \leqslant i \leqslant n} \right) $ , we present the stabilizer construction of such inhomogenous quantum codes, called additive quantum codes, in term of the character theory of the abelian group A = A 1A 2⊕...⊕? n . As usual case, such construction opens a way to get inhomogenous quantum codes from the classical mixed linear codes. We also present Singleton bound for inhomogenous additive quantum codes and show several quantum codes to meet such bound by using classical mixed algebraic-geometric codes.  相似文献   

17.
Using elementary arguments based on the Fourier transform we prove that for ${1 \leq q < p < \infty}$ and ${s \geq 0}$ with s > n(1/2 ? 1/p), if ${f \in L^{q,\infty} (\mathbb{R}^n) \cap \dot{H}^s (\mathbb{R}^n)}$ , then ${f \in L^p(\mathbb{R}^n)}$ and there exists a constant c p,q,s such that $$\| f \|_{L^{p}} \leq c_{p,q,s} \| f \|^\theta _{L^{q,\infty}} \| f \|^{1-\theta}_{\dot{H}^s},$$ where 1/pθ/q + (1?θ)(1/2?s/n). In particular, in ${\mathbb{R}^2}$ we obtain the generalised Ladyzhenskaya inequality ${\| f \| _{L^4} \leq c \| f \|^{1/2}_{L^{2,\infty}} \| f \|^{1/2}_{\dot{H}^1}}$ .We also show that for s = n/2 and q > 1 the norm in ${\| f \|_{\dot{H}^{n/2}}}$ can be replaced by the norm in BMO. As well as giving relatively simple proofs of these inequalities, this paper provides a brief primer of some basic concepts in harmonic analysis, including weak spaces, the Fourier transform, the Lebesgue Differentiation Theorem, and Calderon–Zygmund decompositions.  相似文献   

18.
Let ${\Omega\subset\mathbb{R}^n}$ be open and bounded. For 1 ≤ p < ∞ and 0 ≤ λ < n, we give a characterization of Young measures generated by sequences of functions ${\{{\bf f}_j\}_{j=1}^\infty}$ uniformly bounded in the Morrey space ${L^{p,\lambda}(\Omega;\mathbb{R}^N)}$ with ${\{\left|{{\bf f}_j}\right|^p\}_{j=1}^\infty}$ equiintegrable. We then treat the case that each f j = ? u j for some ${{\bf u}_j\in W^{1,p}(\Omega;\mathbb{R}^N)}$ . As an application of our results, we consider the functional $${\bf u} \mapsto \int\limits_{\Omega}f({\bf x}, {\bf u}({\bf x}), {\bf {\nabla}}{\bf u}({\bf x})){\rm d}{\bf x},$$ and provide conditions that guarantee the existence of a minimizing sequence with gradients uniformly bounded in ${L^{p,\lambda}(\Omega;\mathbb{R}^{N\times n})}$ .  相似文献   

19.
Let (T t ) t?≥ 0 be a bounded analytic semigroup on L p (Ω), with 1?<?p?<?∞. Let ?A denote its infinitesimal generator. It is known that if A and A * both satisfy square function estimates ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{\frac{1}{2}} T_t(x)\vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^p} \lesssim \|x\|_{L^p}}$ and ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{*\frac{1}{2}} T_t^*(y) \vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^{p^\prime}} \lesssim \|y\|_{L^{p^\prime}}}$ for ${x\in L^p(\Omega)}$ and ${y\in L^{p^\prime}(\Omega)}$ , then A admits a bounded ${H^{\infty}(\Sigma_\theta)}$ functional calculus for any ${\theta>\frac{\pi}{2}}$ . We show that this actually holds true for some ${\theta<\frac{\pi}{2}}$ .  相似文献   

20.
We sharpen a procedure of Cao and Zhai (J Théorie Nombres Bordeaux,11: 407–423, 1999) to estimate the sum $$\begin{aligned} \sum _{m\sim M} \sum _{n\sim N} a_m b_n \, e\left(\frac{F m^\alpha n^\beta }{M^\alpha N^\beta }\right) \end{aligned}$$ with $|a_m|,\ |b_n| \le 1$ . We apply this to give bounds for the discrepancy (mod 1) of the sequence $\{p^c: p\le X\}$ where $p$ is a prime variable, in the range $\frac{130}{79}\le c \le \frac{11}{5}$ . An alternative strategy is used for the range $1.48 \le c \le \frac{130}{79}$ . We use further exponential sum estimates to show that for large $R>0$ , and a small constant $\eta >0$ , the inequality $$\begin{aligned} \left| p_1^c+p_2^c+p_3^c+p_4^c+p_5^c - R\right| < R^{-\eta } \end{aligned}$$ holds for many prime tuples, provided $2<c\le 2.041$ . This improves work of Cao and Zhai (Monatsh Math, 150:173–179, 2007) and a theorem claimed by Shi and Liu (Monatsh Math, published online, 2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号