首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our previous paper, the Haar multiresolution analysis (MRA) $\{V_{j}\}_{j\in \mathbb {Z}}$ in $L^{2}(\mathbb {A})$ was constructed, where $\mathbb {A}$ is the adele ring. Since $L^{2}(\mathbb {A})$ is the infinite tensor product of the spaces $L^{2}({\mathbb {Q}}_{p})$ , p=∞,2,3,…, the adelic MRA has some specific properties different from the corresponding finite-dimensional ones. Nevertheless, this infinite-dimensional MRA inherits almost all basic properties of the finite-dimensional case. In this paper we derive explicit formulas for bases in V j , $j\in \mathbb {Z}$ , and for the wavelet bases generated by the above-mentioned adelic MRA. In view of the specific properties of the adelic MRA, there arise some technical problems in the construction of wavelet bases. These problems were solved with the aid of the operator formalization of the process of generation of wavelet bases. We study the spectral properties of the fractional operator introduced by S. Torba and W.A. Zúñiga-Galindo. We prove that the constructed wavelet functions are eigenfunctions of this fractional operator. This paper, as well as our previous paper, introduces new ideas to construct different infinite-dimensional MRAs. Our results can be used in the theory of adelic pseudo-differential operators and equations over the ring of adeles and in adelic models in physics.  相似文献   

2.
For a sequence $\underline{u}=(u_n)_{n\in \mathbb{N }}$ of integers, let $t_{\underline{u}}(\mathbb{T })$ be the group of all topologically $\underline{u}$ -torsion elements of the circle group $\mathbb{T }:=\mathbb{R }/\mathbb{Z }$ . We show that for any $s\in ]0,1[$ and $m\in \{0,+\infty \}$ there exists $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has Hausdorff dimension $s$ and $s$ -dimensional Hausdorff measure equal to $m$ (no other values for $m$ are possible). More generally, for dimension functions $f,g$ with $f(t)\prec g(t), f(t)\prec \!\!\!\prec t$ and $g(t)\prec \!\!\!\prec t$ we find $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has at the same time infinite $f$ -measure and null $g$ -measure.  相似文献   

3.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

4.
5.
This paper deals with the Cauchy problem for a shallow water equation with high-order nonlinearities, y t +u m+1 y x +bu m u x y=0, where b is a constant, $m\in \mathbb{N}$ , and we have the notation $y:= (1-\partial_{x}^{2}) u$ , which includes the famous Camassa–Holm equation, the Degasperis–Procesi equation, and the Novikov equation as special cases. The local well-posedness of strong solutions for the equation in each of the Sobolev spaces $H^{s}(\mathbb{R})$ with $s>\frac{3}{2}$ is obtained, and persistence properties of the strong solutions are studied. Furthermore, although the $H^{1}(\mathbb{R})$ -norm of the solution to the nonlinear model does not remain constant, the existence of its weak solutions in each of the low order Sobolev spaces $H^{s}(\mathbb{R})$ with $1<s<\frac{3}{2}$ is established, under the assumption $u_{0}(x)\in H^{s}(\mathbb{R})\cap W^{1,\infty}(\mathbb{R})$ . Finally, the global weak solution and peakon solution for the equation are also given.  相似文献   

6.
Let \({\mathbb{D}}\) be an arbitrary division ring and \({{\rm M_{n}}(\mathbb{D})}\) be the set of all n × n matrices over \({\mathbb{D}}\) . We define the rank subtractivity or minus partial order on \({{\rm M_{n}}(\mathbb{D})}\) as defined on \({{\rm M_{n}}(\mathbb{C})}\) , i.e., \({A \leqslant B}\) iff rank(B) = rank(A) + rank(B?A). We describe the structure of maps Φ on \({{\rm M_{n}}(\mathbb{D})}\) such that \({A\leqslant B}\) iff \({\Phi(A)\leqslant \Phi(B) (A, B\in {\rm M_{n}}(\mathbb{D}) )}\) .  相似文献   

7.
A. Jabbari 《Semigroup Forum》2012,85(1):160-168
In Jabbari and Namioka (Milan J. Math. 78:503?C522, 2010), the authors characterized the spectrum M(W) of the Weyl algebra W, i.e. the norm closure of the algebra generated by the family of functions $\{n\mapsto x^{n^{k}}; x\in\mathbb{T}, k\in\mathbb{N}\}$ , ( $\mathbb{T}$ the unit circle), with a closed subgroup of $E(\mathbb{T})^{\mathbb{N}}$ where $E(\mathbb{T})$ denotes the family of the endomorphisms of the multiplicative group $\mathbb{T}$ . But the size of M(W) in $E(\mathbb{T})^{\mathbb{N}}$ as well as the induced group operation were left as a problem. In this paper, we will give a solution to this problem.  相似文献   

8.
Let L=?Δ+V is a Schrödinger operator on $\mathbb{R}^{d}$ , d≥3, V≥0. Let $H^{1}_{L}$ denote the Hardy space associated with L. We shall prove that there is an L-harmonic function w, 0<δw(x)≤C, such that the mapping $$H_L^1 \ni f\mapsto wf\in H^1\bigl(\mathbb{R}^d\bigr) $$ is an isomorphism from the Hardy space $H_{L}^{1}$ onto the classical Hardy space $H^{1}(\mathbb{R}^{d})$ if and only if $\Delta^{-1}V(x)=-c_{d}\int_{\mathbb{R}^{d}} |x-y|^{2-d} V(y) dy$ belongs to $L^{\infty}(\mathbb{R}^{d})$ .  相似文献   

9.
Assume that L p,q , $L^{p_1 ,q_1 } ,...,L^{p_n ,q_n } $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \{ (f_1 ,...,f_n ) \in L^{p_{1,} q_1 } \times \cdots \times L^{p_n ,q_n } :f_1 \cdots f_n \in L^{p,q} \} $ . We prove the following dichotomy: either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is σ-porous in $L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ , provided 1/p ≠ 1/p 1 + … + 1/p n . In general case we obtain that either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is meager. This is a generalization of the results for classical L p spaces.  相似文献   

10.
We show a $2$ -nilpotent section conjecture over $\mathbb{R }$ : for a geometrically connected curve $X$ over $\mathbb{R }$ such that each irreducible component of its normalization has $\mathbb{R }$ -points, $\pi _0(X(\mathbb{R }))$ is determined by the maximal $2$ -nilpotent quotient of the fundamental group with its Galois action, as the kernel of an obstruction of Jordan Ellenberg. This implies that for $X$ smooth and proper, $X(\mathbb{R })^{\pm }$ is determined by the maximal $2$ -nilpotent quotient of $\mathrm{Gal }(\mathbb{C }(X))$ with its $\mathrm{Gal }(\mathbb{R })$ action, where $X(\mathbb{R })^{\pm }$ denotes the set of real points equipped with a real tangent direction, showing a $2$ -nilpotent birational real section conjecture.  相似文献   

11.
Let qp s be a power of a prime number p and let ${\mathbb {F}_{\rm q}}$ be a finite field with q elements. This paper aims to demonstrate the utility and relation of composed products to other areas such as the factorization of cyclotomic polynomials, construction of irreducible polynomials, and linear recurrence sequences over ${\mathbb {F}_{\rm q}}$ . In particular we obtain the explicit factorization of the cyclotomic polynomial ${\Phi_{2^nr}}$ over ${\mathbb {F}_{\rm q}}$ where both r ≥ 3 and q are odd, gcd(q, r) = 1, and ${n\in \mathbb{N}}$ . Previously, only the special cases when r = 1, 3, 5, had been achieved. For this we make the assumption that the explicit factorization of ${\Phi_r}$ over ${\mathbb {F}_{\rm q}}$ is given to us as a known. Let ${n = p_1^{e_1}p_2^{e_2}\cdots p_s^{e_s}}$ be the factorization of ${n \in \mathbb{N}}$ into powers of distinct primes p i , 1 ≤ i ≤ s. In the case that the multiplicative orders of q modulo all these prime powers ${p_i^{e_i}}$ are pairwise coprime, we show how to obtain the explicit factors of ${\Phi_{n}}$ from the factors of each ${\Phi_{p_i^{e_i}}}$ . We also demonstrate how to obtain the factorization of ${\Phi_{mn}}$ from the factorization of ${\Phi_n}$ when q is a primitive root modulo m and ${{\rm gcd}(m, n) = {\rm gcd}(\phi(m),{\rm ord}_n(q)) = 1.}$ Here ${\phi}$ is the Euler’s totient function, and ord n (q) denotes the multiplicative order of q modulo n. Moreover, we present the construction of a new class of irreducible polynomials over ${\mathbb {F}_{\rm q}}$ and generalize a result due to Varshamov (Soviet Math Dokl 29:334–336, 1984).  相似文献   

12.
In this paper we describe the actions of the operator $S_\mathbb{D }$ or its adjoint $S_\mathbb{D }^*$ on the poly-Bergman spaces of the unit disk $\mathbb{D }.$ Let $k$ and $j$ be positive integers. We prove that $(S_\mathbb{D })^{j}$ is an isometric isomorphism between the true poly-Bergman subspace $\mathcal{A }_{(k)}^2(\mathbb{D })\ominus N_{(k),j}$ onto the true poly-Bergman space $\mathcal{A }_{(j+k)}^2(\mathbb{D }),$ where the linear space $N_{(k),j}$ have finite dimension $j.$ The action of $(S_\mathbb{D })^{j-1}$ on the canonical Hilbert base for the Bergman subspace $\mathcal{A }^2(\mathbb{D })\ominus \mathcal{P }_{j-1},$ gives a Hilbert base $\{ \phi _{ j , k } \}_{ k }$ for $\mathcal{A }_{(j)}^2(\mathbb{D }).$ It is shown that $\{ \phi _{ j , k } \}_{ j, k }$ is a Hilbert base for $L^2(\mathbb{D },d A)$ such that whenever $j$ and $k$ remain constant we obtain a Hilbert base for the true poly-Bergman space $\mathcal{A }_{(j)}^2(\mathbb{D })$ and $\mathcal{A }_{(-k)}^2(\mathbb{D }),$ respectively. The functions $\phi _{ j , k }$ are polynomials in $z$ and $\overline{z}$ and are explicitly given in terms of the $(2,1)$ -hypergeometric polynomials. We prove explicit representations for the true poly-Bergman kernels and the Koshelev representation for the poly-Bergman kernels of $\mathbb{D }.$ The action of $S_\Pi $ on the true poly-Bergman spaces of the upper half-plane $\Pi $ allows one to introduce Hilbert bases for the true poly-Bergman spaces, and to give explicit representations of the true poly-Bergman and poly-Bergman kernels.  相似文献   

13.
A function ${u : X \to \mathbb{R}}$ defined on a partially ordered set is quasi-Leontief if, for all ${x \in X}$ , the upper level set ${\{x\prime \in X : u(x\prime) \geq u(x)\}}$ has a smallest element; such an element is an efficient point of u. An abstract game ${u_{i} : \prod^{n}_{j=1} X_j \to \mathbb{R}, i \in \{1, \ldots , n\}}$ , is a quasi-Leontief game if, for all i and all ${(x_{j})_{j \neq i} \in \prod_{j \neq i} X_{j}, u_{i}((x_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ is quasi-Leontief; a Nash equilibrium x* of an abstract game ${u_{i} :\prod^{n}_{j=1} X_{j} \to \mathbb{R}}$ is efficient if, for all ${i, x^{*}_{i}}$ is an efficient point of the partial function ${u_{i}((x^{*}_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ . We establish the existence of efficient Nash equilibria when the strategy spaces X i are topological semilattices which are Peano continua and Lawson semilattices.  相似文献   

14.
It is well known that the classical Sobolev embeddings may be improved within the framework of Lorentz spaces L p,q : the space $\mathcal{D}^{1,p}(\mathbb R^n)$ , 1?<?p?<?n, embeds into $L^{p^*,q}(\mathbb R^n)$ , p?≤?q?≤?∞. However, the value of the best possible embedding constants in the corresponding inequalities is known just in the case $L^{p^*,p}(\mathbb R^n)$ . Here, we determine optimal constants for the embedding of the space $\mathcal{D}^{1,p}(\mathbb R^n)$ , 1?<?p?<?n, into the whole Lorentz space scale $L^{p^{\ast}, q}(\mathbb R^n)$ , p?≤?q?≤?∞, including the limiting case q?=?p of which we give a new proof. We also exhibit extremal functions for these embedding inequalities by solving related elliptic problems.  相似文献   

15.
16.
We consider the problem of minimizing or maximizing the quotient $$f_{m,n}(p,q):=\frac{\|{pq}\|}{\|{p}\|\|{q}\|} \ ,$$ where $p=p_0+p_1x+\dots+p_mx^m$ , $q=q_0+q_1x+\dots+q_nx^n\in{\mathbb K}[x]$ , ${\mathbb K}\in\{{\mathbb R},{\mathbb C}\}$ , are non-zero real or complex polynomials of maximum degree $m,n\in{\mathbb N}$ respectively and $\|{p}\|:=(|p_0|^2+\dots+|p_m|^2)^{\frac{1}{2}}$ is simply the Euclidean norm of the polynomial coefficients. Clearly f m,n is bounded and assumes its maximum and minimum values min f m,n ?=?f m,n (p min, q min) and max f m,n ?=?f(p max, q max). We prove that minimizers p min, q min for ${\mathbb K}={\mathbb C}$ and maximizers p max, q max for arbitrary ${\mathbb K}$ fulfill $\deg(p_{\min})=m=\deg(p_{\max})$ , $\deg(q_{\min})=n=\deg(q_{\max})$ and all roots of p min, q min, p max, q max have modulus one and are simple. For ${\mathbb K}={\mathbb R}$ we can only prove the existence of minimizers p min, q min of full degree m and n respectively having roots of modulus one. These results are obtained by transferring the optimization problem to that of determining extremal eigenvalues and corresponding eigenvectors of autocorrelation Toeplitz matrices. By the way we give lower bounds for min f m,n for real polynomials which are slightly better than the known ones and inclusions for max f m,n .  相似文献   

17.
We obtain a formula for the $n$ -dimensional distributions of the $\text{ Airy}_1$ process in terms of a Fredholm determinant on $L^2(\mathbb{R })$ , as opposed to the standard formula which involves extended kernels, on $L^2(\{1,\dots ,n\}\times \mathbb{R })$ . The formula is analogous to an earlier formula of Prähofer and Spohn (J Stat Phys 108(5–6):1071–1106, 2002) for the $\text{ Airy}_2$ process. Using this formula we are able to prove that the $\text{ Airy}_1$ process is Hölder continuous with exponent $\frac{1}{2}$ —and that it fluctuates locally like a Brownian motion. We also explain how the same methods can be used to obtain the analogous results for the $\text{ Airy}_2$ process. As a consequence of these two results, we derive a formula for the continuum statistics of the $\text{ Airy}_1$ process, analogous to that obtained in Corwin et al. (Commun Math Phys 2011, to appear) for the $\text{ Airy}_2$ process.  相似文献   

18.
One considers Gelfand’s hypergeometric functions on the space of p×q matrices and their generalizations to the case of multi-dimensional matrices of arbitrary order k 1×???×k p. It is shown that these functions form bases of some $\frak g$ -modules, where $\frak g=\frak{gl}(p,\mathbb{C})\times\frak{gl}(q,\mathbb{C})$ or $\frak g=\frak{gl}(k_{1},\mathbb{C})\times\cdots\times\frak{gl}(k_{p},\mathbb{C})$ , respectively.  相似文献   

19.
Let $\mathcal{X}$ be a metric space with doubling measure and L a nonnegative self-adjoint operator in $L^{2}(\mathcal{X})$ satisfying the Davies–Gaffney estimates. Let $\varphi:\mathcal{X}\times[0,\infty)\to[0,\infty)$ be a function such that φ(x,?) is an Orlicz function, $\varphi(\cdot,t)\in\mathbb{A}_{\infty}(\mathcal{X})$ (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index I(φ)∈(0,1], and it satisfies the uniformly reverse Hölder inequality of order 2/[2?I(φ)]. In this paper, the authors introduce a Musielak–Orlicz–Hardy space $H_{\varphi,L}(\mathcal{X})$ , by the Lusin area function associated with the heat semigroup generated by L, and a Musielak–Orlicz BMO-type space $\mathrm{BMO}_{\varphi,L}(\mathcal{X})$ , which is further proved to be the dual space of $H_{\varphi,L}(\mathcal{X})$ and hence whose φ-Carleson measure characterization is deduced. Characterizations of $H_{\varphi,L}(\mathcal{X})$ , including the atom, the molecule, and the Lusin area function associated with the Poisson semigroup of L, are presented. Using the atomic characterization, the authors characterize $H_{\varphi,L}(\mathcal{X})$ in terms of the Littlewood–Paley $g^{\ast}_{\lambda}$ -function $g^{\ast}_{\lambda,L}$ and establish a Hörmander-type spectral multiplier theorem for L on $H_{\varphi,L}(\mathcal{X})$ . Moreover, for the Musielak–Orlicz–Hardy space H φ,L (? n ) associated with the Schrödinger operator L:=?Δ+V, where $0\le V\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n})$ , the authors obtain its several equivalent characterizations in terms of the non-tangential maximal function, the radial maximal function, the atom, and the molecule; finally, the authors show that the Riesz transform ?L ?1/2 is bounded from H φ,L (? n ) to the Musielak–Orlicz space L φ (? n ) when i(φ)∈(0,1], and from H φ,L (? n ) to the Musielak–Orlicz–Hardy space H φ (? n ) when $i(\varphi)\in(\frac{n}{n+1},1]$ , where i(φ) denotes the uniformly critical lower type index of φ.  相似文献   

20.
If $f\in L^{p}(\mathbb{R}^{d})$ is a bounded real valued continuous function which has a unique maximum or a unique minimum at a point $x_{0}\in \mathbb{R}^{d}$ and if the inverse image of the neighborhoods of f(x 0) shrinks regularly to x 0, then $\mathrm{ span }\{f^{m}(x-2^{-m}\varSigma_{i=1}^{d} j_{i} e_{i})\mid m\in\mathbb{N}, j_{i}\in\mathbb{Z}\}$ is a dense subset of $L^{p}(\mathbb{R}^{d}), 1\le p<\infty$ where f m (x)=f(x) m and {e i } is the natural basis of $\mathbb{R}^{d}$ . The result extends to all homogeneous groups, Riemannian symmetric spaces of noncompact type, Damek-Ricci spaces etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号