首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper discusses a randomized non-autonomous logistic equation , where B(t) is a 1-dimensional standard Brownian motion. In [D.Q. Jiang, N.Z. Shi, A note on non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl. 303 (2005) 164-172], the authors show that E[1/N(t)] has a unique positive T-periodic solution E[1/Np(t)] provided a(t), b(t) and α(t) are continuous T-periodic functions, a(t)>0, b(t)>0 and . We show that this equation is stochastically permanent and the solution Np(t) is globally attractive provided a(t), b(t) and α(t) are continuous T-periodic functions, a(t)>0, b(t)>0 and mint∈[0,T]a(t)>maxt∈[0,T]α2(t). By the way, the similar results of a generalized non-autonomous logistic equation with random perturbation are yielded.  相似文献   

2.
An even-order three-point boundary value problem on time scales   总被引:1,自引:0,他引:1  
We study the even-order dynamic equation (−1)nx(Δ∇)n(t)=λh(t)f(x(t)), t∈[a,c] satisfying the boundary conditions x(Δ∇)i(a)=0 and x(Δ∇)i(c)=βx(Δ∇)i(b) for 0?i?n−1. The three points a,b,c are from a time scale , where 0<β(ba)<ca for b∈(a,c), β>0, f is a positive function, and h is a nonnegative function that is allowed to vanish on some subintervals of [a,c] of the time scale.  相似文献   

3.
We prove a global bifurcation result for T-periodic solutions of the T-periodic delay differential equation x(t)=λf(t,x(t),x(t−1)) depending on a real parameter λ?0. The approach is based on the fixed point index theory for maps on ANRs.  相似文献   

4.
This paper is concerned with the existence of three positive T-periodic solutions of the first order functional differential equations of the form
x(t)=a(t)x(t)-λb(t)f(t,x(h(t))),  相似文献   

5.
A graph is determined by its signless Laplacian spectrum if no other nonisomorphic graph has the same signless Laplacian spectrum (simply G is DQS). Let T (a, b, c) denote the T-shape tree obtained by identifying the end vertices of three paths P a+2, P b+2 and P c+2. We prove that its all line graphs L(T(a, b, c)) except L(T(t, t, 2t+1)) (t ? 1) are DQS, and determine the graphs which have the same signless Laplacian spectrum as L(T(t, t, 2t + 1)). Let µ1(G) be the maximum signless Laplacian eigenvalue of the graph G. We give the limit of µ1(L(T(a, b, c))), too.  相似文献   

6.
We give Lyapunov exponents of solutions to linear differential equations of the form x=Ax+f(t), where A is a complex matrix and f(t) is a τ-periodic continuous function. Notice that f(t) is not “small” as t→∞. The proof is essentially based on a representation [J. Kato, T. Naito, J.S. Shin, A characterization of solutions in linear differential equations with periodic forcing functions, J. Difference Equ. Appl. 11 (2005) 1-19] of solutions to the above equation.  相似文献   

7.
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for a kind of forced Rayleigh equation of the form
x+f(x(t))+g(t,x(t))=e(t).  相似文献   

8.
We consider the existence and uniqueness of bounded solutions of periodic evolution equations of the form u=A(t)u+?H(t,u)+f(t), where A(t) is, in general, an unbounded operator depending 1-periodically on t, H is 1-periodic in t, ? is small, and f is a bounded and continuous function that is not necessarily uniformly continuous. We propose a new approach to the spectral theory of functions via the concept of “circular spectrum” and then apply it to study the linear equations u=A(t)u+f(t) with general conditions on f. For small ? we show that the perturbed equation inherits some properties of the linear unperturbed one. The main results extend recent results in the direction, saying that if the unitary spectrum of the monodromy operator does not intersect the circular spectrum of f, then the evolution equation has a unique mild solution with its circular spectrum contained in the circular spectrum of f.  相似文献   

9.
In this paper we consider the boundedness of all the solutions for the equation x″ + ax +bx = f(t) is a smooth 2π-periodic function, a and b are positive constants (ab). Received November 27, 1998, Accepted October 15, 1999  相似文献   

10.
This paper deals with the construction of continuous numerical solutions of mixed problems described by the time-dependent telegraph equation utt + c(t)ut + b(t)u = a(t)uxx, 0 < x < d, t > 0. Here a(t), b(t), and c(t) are positive functions with appropiate additional alternative hypotheses. First, using the separation of variables technique a theoretical series solution is obtained. Then, after truncation using one-step matrix methods and interpolating functions, a continuous numerical solution with a prefixed accuracy in a bounded subdomain is constructed.  相似文献   

11.
In this paper, we use the coincidence degree theory to establish new results on the existence of T-periodic solutions for the Rayleigh equation with a deviating argument of the form
x+f(x(t))+g(t,x(tτ(t)))=p(t).  相似文献   

12.
We study the differential equation x"+g(x¢)+m(x) sgn x¢+f(x)=j(t)x''+g(x')+\mu(x)\,{\rm sgn}\, x'+f(x)=\varphi(t) with T-periodic right-hand side, which models e.g. a mechanical system with one degree of freedom subjected to dry friction and periodic external force. If, in particular, the damping term g is present and acts, up to a bounded difference, like a linear damping, we get existence of a T-periodic solution.¶In the more difficult case g = 0, we concentrate on the model equation x"+m(x) sgn x¢+x=j(t)x''+\mu(x)\,{\rm sgn}\,x'+x=\varphi(t) and obtain sufficient conditions for the existence of a T-periodic solution by application of Brouwer's fixed point theorem. For this purpose we show that a certain associated autonomous differential equation admits a periodic orbit such that the surrounded set (minus some neighborhood of the equilibria) is forward invariant for the equation above. Under additional assumptions on 7 we prove boundedness of all solutions.¶Finally, we provide a principle of linearized stability for periodic solutions without deadzones, where the "linearized" differential equation is an impulsive Hill equation.  相似文献   

13.
Let X be an infinite dimensional real reflexive Banach space with dual space X and GX, open and bounded. Assume that X and X are locally uniformly convex. Let T:XD(T)→2X be maximal monotone and strongly quasibounded, S:XD(S)→X maximal monotone, and C:XD(C)→X strongly quasibounded w.r.t. S and such that it satisfies a generalized (S+)-condition w.r.t. S. Assume that D(S)=LD(T)∩D(C), where L is a dense subspace of X, and 0∈T(0),S(0)=0. A new topological degree theory is introduced for the sum T+S+C, with degree mapping d(T+S+C,G,0). The reason for this development is the creation of a useful tool for the study of a class of time-dependent problems involving three operators. This degree theory is based on a degree theory that was recently developed by Kartsatos and Skrypnik just for the single-valued sum S+C, as above.  相似文献   

14.
Conditions are given which guarantee that if T > 0 is sufficiently small, then x(t) = ∝0 [dE(s)] x(ts)+ f(t) has a unique T-periodic solution x for each continuous T-periodic function f. The vectors x and f are n-dimensional; the matrix function E(s) is n × n with bounded total variation. The proof adapts readily to provide an analogous result when x and f are almost periodic functions whose non-zero Fourier frequencies are bounded away from zero. The results are applied to study certain perturbations of the above equation.  相似文献   

15.
We consider the nonlinear Euler differential equation t2x+g(x)=0. Here g(x) satisfies xg(x)>0 for x≠0, but is not assumed to be sublinear or superlinear. We present implicit necessary and sufficient condition for all nontrivial solutions of this system to be oscillatory or nonoscillatory. Also we prove that solutions of this system are all oscillatory or all nonoscillatory and cannot be both. We derive explicit conditions and improve the results presented in the previous literature. We extend our results to the extended equation t2x+a(t)g(x)=0.  相似文献   

16.
We study the 3×3 elliptic systems ∇(a(x)∇×u)−∇(b(x)∇⋅u)=f, where the coefficients a(x) and b(x) are positive scalar functions that are measurable and bounded away from zero and infinity. We prove that weak solutions of the above system are Hölder continuous under some minimal conditions on the inhomogeneous term f. We also present some applications and discuss several related topics including estimates of the Green?s functions and the heat kernels of the above systems.  相似文献   

17.
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the first order neutral functional differential equation of the form
(x(t)+Bx(tδ))=g1(t,x(t))+g2(t,x(tτ))+p(t).  相似文献   

18.
In this paper we study the existence of periodic solutions of the fourth-order equations uivpu″ − a(x)u + b(x)u3 = 0 and uivpu″ + a(x)ub(x)u3 = 0, where p is a positive constant, and a(x) and b(x) are continuous positive 2L-periodic functions. The boundary value problems (P1) and (P2) for these equations are considered respectively with the boundary conditions u(0) = u(L) = u″(0) = u″(L) = 0. Existence of nontrivial solutions for (P1) is proved using a minimization theorem and a multiplicity result using Clark's theorem. Existence of nontrivial solutions for (P2) is proved using the symmetric mountain-pass theorem. We study also the homoclinic solutions for the fourth-order equation uiv + pu″ + a(x)ub(x)u2c(x)u3 = 0, where p is a constant, and a(x), b(x), and c(x) are periodic functions. The mountain-pass theorem of Brezis and Nirenberg and concentration-compactness arguments are used.  相似文献   

19.
The finite generators of Abelian integral are obtained, where Γh is a family of closed ovals defined by H(x,y)=x2+y2+ax4+bx2y2+cy4=h, hΣ, ac(4acb2)≠0, Σ=(0,h1) is the open interval on which Γh is defined, f(x,y), g(x,y) are real polynomials in x and y with degree 2n+1 (n?2). And an upper bound of the number of zeros of Abelian integral I(h) is given by its algebraic structure for a special case a>0, b=0, c=1.  相似文献   

20.
By constructing different auxiliary functions and using Hopf’s maximum principle, the sufficient conditions for the blow-up and global solutions are presented for nonlinear parabolic equation ut = ∇(a(u)b(x)c(t)∇u) + f(xuqt) with different kinds of boundary conditions. The upper bounds of the “blow-up time” and the “upper estimates” of global solutions are provided. Finally, some examples are presented as the application of the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号