首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We consider symmetric positive definite systems of linear equations with multiple right‐hand sides. The seed conjugate gradient (CG) method solves one right‐hand side with the CG method and simultaneously projects over the Krylov subspace thus developed for the other right‐hand sides. Then the next system is solved and used to seed the remaining ones. Rounding error in the CG method limits how much the seeding can improve convergence. We propose three changes to the seed CG method: only the first right‐hand side is used for seeding, this system is solved past convergence, and the roundoff error is controlled with some reorthogonalization. We will show that results are actually better with only one seeding, even in the case of related right‐hand sides. Controlling rounding error gives the potential for rapid convergence for the second and subsequent right‐hand sides. Polynomial preconditioning can help reduce storage needed for reorthogonalization. The new seed methods are applied to examples including matrices from quantum chromodynamics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The restarted block generalized minimum residual method (BGMRES) with deflated restarting (BGMRES‐DR) was proposed by Morgan to dump the negative effect of small eigenvalues from the convergence of the BGMRES method. More recently, Wu et al. introduced the shifted BGMRES method (BGMRES‐Sh) for solving the sequence of linear systems with multiple shifts and multiple right‐hand sides. In this paper, a new shifted block Krylov subspace algorithm that combines the characteristics of both the BGMRES‐DR and the BGMRES‐Sh methods is proposed. Moreover, our method is enhanced with a seed selection strategy to handle the case of almost linear dependence of the right‐hand sides. Numerical experiments illustrate the potential of the proposed method to solve efficiently the sequence of linear systems with multiple shifts and multiple right‐hand sides, with and without preconditioner, also against other state‐of‐the‐art solvers.  相似文献   

3.
In this paper, we first give a result which links any global Krylov method for solving linear systems with several right-hand sides to the corresponding classical Krylov method. Then, we propose a general framework for matrix Krylov subspace methods for linear systems with multiple right-hand sides. Our approach use global projection techniques, it is based on the Global Generalized Hessenberg Process (GGHP) – which use the Frobenius scalar product and construct a basis of a matrix Krylov subspace – and on the use of a Galerkin or a minimizing norm condition. To accelerate the convergence of global methods, we will introduce weighted global methods. In these methods, the GGHP uses a different scalar product at each restart. Experimental results are presented to show the good performances of the weighted global methods. AMS subject classification 65F10  相似文献   

4.
An algorithm for solving the problem of minimizing a quadratic function subject to ellipsoidal constraints is introduced. This algorithm is based on the impHcitly restarted Lanczos method to construct a basis for the Krylov subspace in conjunction with a model trust region strategy to choose the step. The trial step is computed on the small dimensional subspace that lies inside the trust region.

One of the main advantages of this algorithm is the way that the Krylov subspace is terminated. We introduce a terminationcondition that allows the gradient to be decreased on that subspace.

A convergence theory for this algorithm is presented. It is shown that this algorithm is globally convergent and it shouldcope quite well with large scale minimization problems. This theory is sufficiently general that it holds for any algorithm that projects the problem on a lower dimensional subspace.  相似文献   

5.
For solving least squares problems, the CGLS method is a typical method in the point of view of iterative methods. When the least squares problems are ill-conditioned, the convergence behavior of the CGLS method will present a deteriorated result. We expect to select other iterative Krylov subspace methods to overcome the disadvantage of CGLS. Here the GMRES method is a suitable algorithm for the reason that it is derived from the minimal residual norm approach, which coincides with least squares problems. Ken Hayami proposed BAGMRES for solving least squares problems in [\emph{GMRES Methods for Least Squares Problems, SIAM J. Matrix Anal. Appl., 31(2010)}, pp.2400-2430]. The deflation and balancing preconditioners can optimize the convergence rate through modulating spectral distribution. Hence, in this paper we utilize preconditioned iterative Krylov subspace methods with deflation and balancing preconditioners in order to solve ill-conditioned least squares problems. Numerical experiments show that the methods proposed in this paper are better than the CGLS method.  相似文献   

6.
江燕  黄崇超  余谦 《数学杂志》2004,24(6):669-674
本文为框式线性规划给出了一个非精确不可行内点算法.该算法使用的搜索方向仅需要达到一个相对的精度,这样的搜索方向可以通过Krylov子空间迭代法,比如CG或QMR得到,本文最后证明了算法的全局收敛性。  相似文献   

7.
Solutions of large sparse linear systems of equations are usually obtained iteratively by constructing a smaller dimensional subspace such as a Krylov subspace. The convergence of these methods is sometimes hampered by the presence of small eigenvalues, in which case, some form of deflation can help improve convergence. The method presented in this paper enables the solution to be approximated by focusing the attention directly on the ‘small’ eigenspace (‘singular vector’ space). It is based on embedding the solution of the linear system within the eigenvalue problem (singular value problem) in order to facilitate the direct use of methods such as implicitly restarted Arnoldi or Jacobi–Davidson for the linear system solution. The proposed method, called ‘solution by null‐space approximation and projection’ (SNAP), differs from other similar approaches in that it converts the non‐homogeneous system into a homogeneous one by constructing an annihilator of the right‐hand side. The solution then lies in the null space of the resulting matrix. We examine the construction of a sequence of approximate null spaces using a Jacobi–Davidson style singular value decomposition method, called restarted SNAP‐JD, from which an approximate solution can be obtained. Relevant theory is discussed and the method is illustrated by numerical examples where SNAP is compared with both GMRES and GMRES‐IR. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The FEAST eigenvalue algorithm is a subspace iteration algorithm that uses contour integration to obtain the eigenvectors of a matrix for the eigenvalues that are located in any user‐defined region in the complex plane. By computing small numbers of eigenvalues in specific regions of the complex plane, FEAST is able to naturally parallelize the solution of eigenvalue problems by solving for multiple eigenpairs simultaneously. The traditional FEAST algorithm is implemented by directly solving collections of shifted linear systems of equations; in this paper, we describe a variation of the FEAST algorithm that uses iterative Krylov subspace algorithms for solving the shifted linear systems inexactly. We show that this iterative FEAST algorithm (which we call IFEAST) is mathematically equivalent to a block Krylov subspace method for solving eigenvalue problems. By using Krylov subspaces indirectly through solving shifted linear systems, rather than directly using them in projecting the eigenvalue problem, it becomes possible to use IFEAST to solve eigenvalue problems using very large dimension Krylov subspaces without ever having to store a basis for those subspaces. IFEAST thus combines the flexibility and power of Krylov methods, requiring only matrix–vector multiplication for solving eigenvalue problems, with the natural parallelism of the traditional FEAST algorithm. We discuss the relationship between IFEAST and more traditional Krylov methods and provide numerical examples illustrating its behavior.  相似文献   

9.
LSQR, a Lanczos bidiagonalization based Krylov subspace iterative method, and its mathematically equivalent conjugate gradient for least squares problems (CGLS) applied to normal equations system, are commonly used for large-scale discrete ill-posed problems. It is well known that LSQR and CGLS have regularizing effects, where the number of iterations plays the role of the regularization parameter. However, it has long been unknown whether the regularizing effects are good enough to find best possible regularized solutions. Here a best possible regularized solution means that it is at least as accurate as the best regularized solution obtained by the truncated singular value decomposition (TSVD) method. We establish bounds for the distance between the k-dimensional Krylov subspace and the k-dimensional dominant right singular space. They show that the Krylov subspace captures the dominant right singular space better for severely and moderately ill-posed problems than for mildly ill-posed problems. Our general conclusions are that LSQR has better regularizing effects for the first two kinds of problems than for the third kind, and a hybrid LSQR with additional regularization is generally needed for mildly ill-posed problems. Exploiting the established bounds, we derive an estimate for the accuracy of the rank k approximation generated by Lanczos bidiagonalization. Numerical experiments illustrate that the regularizing effects of LSQR are good enough to compute best possible regularized solutions for severely and moderately ill-posed problems, stronger than our theory predicts, but they are not for mildly ill-posed problems and additional regularization is needed.  相似文献   

10.
周茜  雷渊  乔文龙 《计算数学》2016,38(2):171-186
本文主要考虑一类线性矩阵不等式及其最小二乘问题,它等价于相应的矩阵不等式最小非负偏差问题.之前相关文献提出了求解该类最小非负偏差问题的迭代方法,但该方法在每步迭代过程中需要精确求解一个约束最小二乘子问题,因此对规模较大的问题,整个迭代过程需要耗费巨大的计算量.为了提高计算效率,本文在现有算法的基础上,提出了一类修正迭代方法.该方法在每步迭代过程中利用有限步的矩阵型LSQR方法求解一个低维矩阵Krylov子空间上的约束最小二乘子问题,降低了整个迭代所需的计算量.进一步运用投影定理以及相关的矩阵分析方法证明了该修正算法的收敛性,最后通过数值例子验证了本文的理论结果以及算法的有效性.  相似文献   

11.
In this paper we consider the problem of approximating the solution of infinite linear systems, finitely expressed by a sparse coefficient matrix. We analyse an algorithm based on Krylov subspace methods embedded in an adaptive enlargement scheme. The management of the algorithm is not trivial, due to the irregular convergence behaviour frequently displayed by Krylov subspace methods for nonsymmetric systems. Numerical experiments, carried out on several test problems, indicate that the more robust methods, such as GMRES and QMR, embedded in the adaptive enlargement scheme, exhibit good performances.  相似文献   

12.
The global bi-conjugate gradient (Gl-BCG) method is an attractive matrix Krylov subspace method for solving nonsymmetric linear systems with multiple right-hand sides, but it often show irregular convergence behavior in many applications. In this paper, we present a new family of global A-biorthogonal methods by using short two-term recurrences and formal orthogonal polynomials, which contain the global bi-conjugate residual (Gl-BCR) algorithm and its improved version. Finally, numerical experiments illustrate that the proposed methods are highly competitive and often superior to originals.  相似文献   

13.
The regularizing properties of the Golub–Kahan bidiagonalization algorithm are powerful when the associated Krylov subspace captures the dominating components of the solution. In some applications the regularized solution can be further improved by enrichment, that is, by augmenting the Krylov subspace with a low‐dimensional subspace that represents specific prior information. Inspired by earlier work on GMRES, we demonstrate how to carry these ideas over to the bidiagonalization algorithm, and we describe how to incorporate Tikhonov regularization. This leads to a hybrid iterative method where the choice of regularization parameter in each iteration also provides a stopping rule.  相似文献   

14.
Tikhonov regularization is a popular method for the solution of linear discrete ill-posed problems with error-contaminated data. Nonstationary iterated Tikhonov regularization is known to be able to determine approximate solutions of higher quality than standard Tikhonov regularization. We investigate the choice of solution subspace in iterative methods for nonstationary iterated Tikhonov regularization of large-scale problems. Generalized Krylov subspaces are compared with Krylov subspaces that are generated by Golub–Kahan bidiagonalization and the Arnoldi process. Numerical examples illustrate the effectiveness of the methods.  相似文献   

15.
The global bi-conjugate gradient (Gl-BCG) method is an attractive matrix Krylov subspace method for solving nonsymmetric linear systems with multiple right-hand sides, but it often show irregular convergence behavior in many applications. In this paper, we present a new family of global A-biorthogonal methods by using short two-term recurrences and formal orthogonal polynomials, which contain the global bi-conjugate residual (Gl-BCR) algorithm and its improved version. Finally, numerical experiments illustrate that the proposed methods are highly competitive and often superior to originals.  相似文献   

16.
利用平面上的黄金分割法求全局最优解   总被引:5,自引:0,他引:5  
给出了无约束全局最优问题的一种解法 ,该方法是一维搜索中的 0 .61 8法的推广 ,不仅使其适用范围由一维扩展到平面上 ,并且将原方法只适用于单峰函数的局部搜索改进为可适用于多峰函数的全局最优解的搜索 .给出了收敛性证明 .本法突出的优点在于 :适用性强、算法简单、可以在任意精度内寻得最优解并且克服了以往直接解法所共有的要求大量计算机内存的缺点 .仿真结果表明算法是有效的 .  相似文献   

17.
The linear least squares problem, minxAx − b∥2, is solved by applying a multisplitting (MS) strategy in which the system matrix is decomposed by columns into p blocks. The b and x vectors are partitioned consistently with the matrix decomposition. The global least squares problem is then replaced by a sequence of local least squares problems which can be solved in parallel by MS. In MS the solutions to the local problems are recombined using weighting matrices to pick out the appropriate components of each subproblem solution. A new two-stage algorithm which optimizes the global update each iteration is also given. For this algorithm the updates are obtained by finding the optimal update with respect to the weights of the recombination. For the least squares problem presented, the global update optimization can also be formulated as a least squares problem of dimension p. Theoretical results are presented which prove the convergence of the iterations. Numerical results which detail the iteration behavior relative to subproblem size, convergence criteria and recombination techniques are given. The two-stage MS strategy is shown to be effective for near-separable problems. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper we introduce a new preconditioner for linear systems of saddle point type arising from the numerical solution of the Navier-Stokes equations. Our approach is based on a dimensional splitting of the problem along the components of the velocity field, resulting in a convergent fixed-point iteration. The basic iteration is accelerated by a Krylov subspace method like restarted GMRES. The corresponding preconditioner requires at each iteration the solution of a set of discrete scalar elliptic equations, one for each component of the velocity field. Numerical experiments illustrating the convergence behavior for different finite element discretizations of Stokes and Oseen problems are included.  相似文献   

19.
We consider the approximation of operator functions in resolvent Krylov subspaces. Besides many other applications, such approximations are currently of high interest for the approximation of φ-functions that arise in the numerical solution of evolution equations by exponential integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behaviour if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we analyse a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators whose field of values lies in the left half plane. In contrast to standard Krylov methods, the convergence will be independent of the norm of the discretised operator and thus of the spatial discretisation. We will discuss efficient implementations for finite element discretisations and illustrate our analysis with numerical experiments.  相似文献   

20.
We consider the approximation of trigonometric operator functions that arise in the numerical solution of wave equations by trigonometric integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behavior if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we propose and analyze a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators. In contrast to standard Krylov methods, the convergence will be independent of the norm of the operator and thus of its spatial discretization. We will discuss efficient implementations for finite element discretizations and illustrate our analysis with numerical experiments. AMS subject classification (2000)  65F10, 65L60, 65M60, 65N22  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号