首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
In this note, we prove some results of Hua in short intervals. For example, each sufficiently large integer N satisfying some congruence conditions can be written as
$ \left\{ {\begin{array}{*{20}{c}} {N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + {p^k}}, \hfill \\ {\left| {{p_j} - \sqrt {N/5} } \right| \leqslant U,\left| {p - {{\left( {N/5} \right)}^{\tfrac{1}{k}}}} \right|\leqslant UN - \tfrac{1}{2} + \tfrac{1}{k},j = 1,2,3,4,} \hfill \\ \end{array} } \right. $
where \( U = N\tfrac{1}{2} - \eta + \varepsilon \) with \( \eta = \frac{2}{{\kappa \left( {K + 1} \right)\left( {{K^2} + 2} \right)}} \) and \( K = {2^{k - 1}},k\geqslant 3. \)
  相似文献   

2.
In this paper, we study the existence of positive entire large and bounded radial positive solutions for the following nonlinear system
$$\left\{ {\begin{array}{*{20}c}{S_{k_1 } \left( {\lambda \left( {D^2 u_1 } \right)} \right) + a_1 \left( {\left| x \right|} \right)\left| {\nabla u_1 } \right|^{k_1 } = p_1 \left( {\left| x \right|} \right)f_1 \left( {u_2 } \right)} & {for x \in \mathbb{R}^N ,} \\{S_{k_2 } \left( {\lambda \left( {D^2 u_2 } \right)} \right) + a_2 \left( {\left| x \right|} \right)\left| {\nabla u_2 } \right|^{k_2 } = p_2 \left( {\left| x \right|} \right)f_2 \left( {u_1 } \right)} & {for x \in \mathbb{R}^N .} \\\end{array} } \right.$$
Here \({S_{{k_i}}}\left( {\lambda \left( {{D^2}{u_i}} \right)} \right)\) is the k i -Hessian operator, a 1, p 1, f 1, a 2, p 2 and f 2 are continuous functions.
  相似文献   

3.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

4.
For a polynomial P(z) of degree n having no zeros in |z| < 1, it was recently proved in [9] that
$$\left| {{z^s}{P^{\left( s \right)}}\left( z \right) + \beta \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{{{2^s}}}P\left( z \right)} \right| \leqslant \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{2}\left( {\left| {1 + \frac{\beta }{{{2^s}}}} \right| + \left| {\frac{\beta }{{{2^s}}}} \right|} \right)\mathop {\max }\limits_{\left| z \right| = 1} \left| {P\left( z \right)} \right|$$
for every β ∈ C with |β| ≤ 1, 1 ≤ sn and |z| = 1. In this paper, we obtain the L p mean extension of the above and other related results for the sth derivative of polynomials.
  相似文献   

5.
Let f and g be multiplicative functions of modulus 1. Assume that \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {f(n)} } \right| = A > 0 \) and \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {g(n)} } \right| = 0 \). We prove that, under these conditions,
$ \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)g(n + 1) = 0.}$
Concerning the Liouville function λ, we find an upper estimate for \( \frac{1}{x}\left| {\sum\limits_{n \leqslant x} {\lambda (n)\lambda (n + 1)} } \right| \) under the unproved hypothesis that L(s, χ) have Siegel zeros for an infinite sequence of L-functions.
  相似文献   

6.
In this paper, we consider the ground-states of the following M-coupled system:
$$\left\{ {\begin{array}{*{20}{c}}{ - \Delta {u_i} = \sum\limits_{j = 1}^M {{k_{ij}}\frac{{2{q_{ij}}}}{{2*}}{{\left| {{u_j}} \right|}^{{p_{ij}}}}{{\left| {{u_i}} \right|}^{{q_{ij}} - {2_{{u_i}}}}},x \in {\mathbb{R}^N},} } \\{{u_i} \in {D^{1,2}}\left( {{\mathbb{R}^N}} \right),i = 1,2, \ldots ,M,}\end{array}} \right.$$
where \(p_{ij} + q_{ij} = 2*: = \frac{{2N}}{{N - 2}}(N \geqslant 3)\). We prove the existence of ground-states to the M-coupled system. At the same time, we not only give out the characterization of the ground-states, but also study the number of the ground-states, containing the positive ground-states and the semi-trivial ground-states, which may be the first result studying the number of not only positive ground-states but also semi-trivial ground-states.
  相似文献   

7.
Let La(n, P) be the maximum size of a family of subsets of [n] = {1, 2, … , n} not containing P as a (weak) subposet, and let h(P) be the length of a longest chain in P. The best known upper bound for La(n, P) in terms of |P| and h(P) is due to Chen and Li, who showed that \(\text {La}(n,P) \le \frac {1}{m+1} \left (|{P}| + \frac {1}{2}(m^{2} +3m-2)(h(P)-1) -1 \right ) {\left (\begin {array}{c}{n}\\ {\lfloor n/2 \rfloor } \end {array}\right )}\) for any fixed m ≥ 1. In this paper we show that \(\text {La}(n,P) \le \frac {1}{2^{k-1}} \left (|P| + (3k-5)2^{k-2}(h(P)-1) - 1 \right ) {\left (\begin {array}{c}{n}\\ {\lfloor n/2 \rfloor } \end {array}\right )}\) for any fixed k ≥ 2, improving the best known upper bound. By choosing k appropriately, we obtain that \(\text {La}(n,P) = \mathcal {O}\left (h(P) \log _{2}\left (\frac {|{P}|}{h(P)}+2\right ) \right ) {\left (\begin {array}{c}{n}\\ {\lfloor n/2 \rfloor } \end {array}\right )}\) as a corollary, which we show is best possible for general P. We also give a different proof of this corollary by using bounds for generalized diamonds. We also show that the Lubell function of a family of subsets of [n] not containing P as an induced subposet is \(\mathcal {O}(n^{c})\) for every \(c>\frac {1}{2}\).  相似文献   

8.
In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space \(\dot B_{\infty ,\infty }^{ - r}\left( {{\mathbb{R}^2}} \right)\). The result shows that if θ is a weak solutions satisfies
$$\int_0^T {\frac{{\left\| {\nabla \theta ( \cdot ,s)} \right\|_{\dot B_{\infty ,\infty }^{ - r} }^{\tfrac{\alpha }{{\alpha - r}}} }}{{1 + \ln \left( {e + \left\| {\nabla ^ \bot \theta ( \cdot ,s)} \right\|_{L^{\tfrac{2}{r}} } } \right)!}}ds < \infty for some 0 < r < \alpha and 0 < \alpha < 1,}$$
then θ is regular at t = T. In view of the embedding \({L^{\frac{2}{r}}} \subset M_{\frac{2}{r}}^p \subset \dot B_{\infty ,\infty }^{ - r}\) with \(2 \leqslant p < \frac{2}{r}\) and 0 ≤ r < 1, we see that our result extends the results due to [20] and [31].
  相似文献   

9.
Suppose that m ≥ 2, numbers p 1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + \cdots + \frac{1}{{{p_m}}} < 1\), and functions \({\gamma _1} \in {L^{{p_1}}}\left( {{?^1}} \right), \cdots ,{\gamma _m} \in {L^{{p_m}}}\left( {{?^1}} \right)\) are given. It is proved that if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both notions were defined by the author for functions in L p (?1), p ∈ (1, +∞]), then \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\mathop \smallint \limits_a^b \prod\limits_{k = 1}^m {[{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)]} d\tau } \right| \leqslant C\prod\limits_{k = 1}^m {{{\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|}_{L_{ak}^{pk}\left( {{R^1}} \right)}}} \) where the constant C > 0 is independent of the functions \(\Delta {\gamma _k} \in L_{ak}^{pk}\left( {{?^1}} \right)\) and \(L_{ak}^{pk}\left( {{?^1}} \right) \subset {L^{pk}}\left( {{?^1}} \right)\), 1 ≤ km, are special normed spaces. A condition for the integral over ?1 of a product of functions to be bounded is also given.  相似文献   

10.
The Berezin symbol à of an operator A acting on the reproducing kernel Hilbert space H = H(Ω) over some (nonempty) set is defined by \(\tilde A(\lambda ) = \left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle \), λ ∈ Ω, where \(\hat k_\lambda = k_\lambda /\left\| {k_\lambda } \right\|\) is the normalized reproducing kernel of H. The Berezin number of the operator A is defined by \(ber(A) = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\tilde A(\lambda )} \right| = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle } \right|\). Moreover, ber(A) ? w(A) (numerical radius). We present some Berezin number inequalities. Among other inequalities, it is shown that if \(T = \left[ {\begin{array}{*{20}c} A & B \\ C & D \\ \end{array} } \right] \in \mathbb{B}(\mathcal{H}(\Omega _1 ) \oplus \mathcal{H}(\Omega _2 ))\), then
$$ber(T) \leqslant \frac{1}{2}(ber(A) + ber(D)) + \frac{1}{2}\sqrt {(ber(A) - ber(D))^2 + \left( {\left\| B \right\| + \left\| C \right\|} \right)^2 } .$$
  相似文献   

11.
We study the existence and multiplicity of sign-changing solutions of the following equation
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{lllllllll} -{\Delta} u = \mu |u|^{2^{\star}-2}u+\frac{|u|^{2^{*}(t)-2}u}{|x|^{t}}+a(x)u \quad\text{in}\, {\Omega}, \\ u=0 \quad\text{on}\quad\partial{\Omega}, \end{array}\right. \end{array} $$
where Ω is a bounded domain in \(\mathbb {R}^{N}\), 0∈?Ω, all the principal curvatures of ?Ω at 0 are negative and μ≥0, a>0, N≥7, 0<t<2, \(2^{\star }=\frac {2N}{N-2}\) and \(2^{\star }(t)=\frac {2(N-t)}{N-2}\).
  相似文献   

12.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

13.
We consider integral functionals in which the density has growth p i with respect to ${\frac{\partial u}{\partial x_i}}$ , like in $$\int\limits_{\Omega}\left( \left| \frac{\partial u}{\partial x_1}(x) \right|^{p_1} + \left|\frac{\partial u}{\partial x_2}(x)\right|^{p_2} + \cdots + \left|\frac{\partial u}{\partial x_n}(x) \right|^{p_n} \right) dx.$$ We show that higher integrability of the boundary datum forces minimizer to be more integrable.  相似文献   

14.
Following an idea of Lin, we prove that if A and B are two positive operators such that 0 mI ≤ A ≤m'I≤ M'I ≤ B ≤ MI, then Φ~2(A+B/2)≤K~2(h)/(1+(logM'/m'/g))~2Φ~2(A≠B) and Φ~2(A+B/2)≤K~2(h)/(1+(logM'/m'/g))~2(Φ(A)≠Φ(B))~2 where K(h)=(h+1)~2/4 and h = M/m and Φ is a positive unital linear map.  相似文献   

15.
The authors study the following Dirichlet problem of a system involving fractional (p, q)-Laplacian operators:
$$\left\{ {\begin{array}{*{20}{c}} {\left( { - \Delta } \right)_p^su = \lambda a\left( x \right){{\left| u \right|}^{p - 2}}u + \lambda b\left( x \right){{\left| u \right|}^{\alpha - 2}}{{\left| v \right|}^\beta }u + \frac{{\mu \left( x \right)}}{{\alpha \delta }}{{\left| u \right|}^{\gamma - 2}}{{\left| v \right|}^\delta }uin\Omega ,} \\ {\left( { - \Delta } \right)_q^sv = \lambda c\left( x \right){{\left| v \right|}^{q - 2}}v + \lambda b\left( x \right){{\left| u \right|}^\alpha }{{\left| v \right|}^{\beta - 2}}v + \frac{{\mu \left( x \right)}}{{\beta \gamma }}{{\left| u \right|}^\gamma }{{\left| v \right|}^{\delta - 2}}vin\Omega ,} \\ {u = v = 0on{\mathbb{R}^N}\backslash \Omega ,} \end{array}} \right.$$
where λ > 0 is a real parameter, Ω is a bounded domain in R N , with boundary ?Ω Lipschitz continuous, s ∈ (0, 1), 1 < pq < ∞, sq < N, while (?Δ) p s u is the fractional p-Laplacian operator of u and, similarly, (?Δ) q s v is the fractional q-Laplacian operator of v. Since possibly pq, the classical definitions of the Nehari manifold for systems and of the Fibering mapping are not suitable. In this paper, the authors modify these definitions to solve the Dirichlet problem above. Then, by virtue of the properties of the first eigenvalue λ1 for a related system, they prove that there exists a positive solution for the problem when λ < λ1 by the modified definitions. Moreover, the authors obtain the bifurcation property when λ → λ1-. Finally, thanks to the Picone identity, a nonexistence result is also obtained when λ ≥ λ1.
  相似文献   

16.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

17.
In the space L 2(?2), we consider the operator
$H = \left( {\frac{1}{i}\frac{\partial }{{\partial x_1 }} - x_2 } \right)^2 + \left( {\frac{1}{i}\frac{\partial }{{\partial x_2 }} + x_1 } \right)^2 + V,V = V(x) \in L_2 (\mathbb{R}^2 ).$
. We study the spectrum of H and, for VC 0 2 (?2), prove the trace formula
$\sum\limits_{k = 0}^\infty {\left( {\sum\limits_{i = - k}^\infty {(4k + 2 - \mu _k^{(i)} ) + c_0 } } \right)} = \frac{1}{{8\pi }}\int\limits_{\mathbb{R}^2 } {V^2 (x)dx,} $
where c 0 = π ?1 \(\smallint _{\mathbb{R}^2 } \) V(x) dx and the µ k (i) are the eigenvalues of H.
  相似文献   

18.
In this paper, we prove some congruences conjectured by Z.-W. Sun: For any prime \(p>3\), we determine
$$\begin{aligned} \sum \limits _{k = 0}^{p - 1} {\frac{{{C_k}C_k^{(2)}}}{{{{27}^k}}}} \quad {\text { and }}\quad \sum \limits _{k = 1}^{p - 1} {\frac{{\left( {\begin{array}{l} {2k} \\ {k - 1} \\ \end{array}} \right) \left( { \begin{array}{l} {3k} \\ {k - 1} \\ \end{array} } \right) }}{{{{27}^k}}}} \end{aligned}$$
modulo \(p^2\), where \(C_k=\frac{1}{k+1}\left( {\begin{array}{c}2k\\ k\end{array}}\right) \) is the k-th Catalan number and \(C_k^{(2)}=\frac{1}{2k+1}\left( {\begin{array}{c}3k\\ k\end{array}}\right) \) is the second-order Catalan numbers of the first kind. And we prove that
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{D_k}{k}\equiv -q_p(2)+pq_p(2)^2\pmod {p^2}, \end{aligned}$$
where \(D_n=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+k\\ k\end{array}}\right) \) is the n-th Delannoy number and \(q_p(2)=(2^{{p-1}}-1)/p\) is the Fermat quotient.
  相似文献   

19.
This paper is concerned with the following Kirchhoff-type equations:
$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -\big (a+b\int _{\mathbb {R}^{3}}|\nabla u|^{2}\mathrm {d}x\big )\Delta u+ V(x)u+\mu \phi |u|^{p-2}u=f(x, u)+g(x,u), &{} \text{ in } \mathbb {R}^{3},\\ (-\Delta )^{\frac{\alpha }{2}} \phi = \mu |u|^{p}, &{} \text{ in } \mathbb {R}^{3},\\ \end{array} \right. \end{aligned}$$
where \(a>0,~b,~\mu \ge 0\) are constants, \(\alpha \in (0,3)\), \(p\in [2,3+2\alpha )\), the potential V(x) may be unbounded from below and \(\phi |u|^{p-2}u\) is a Hartree-type nonlinearity. Under some mild conditions on V(x), f(xu) and g(xu), we prove that the above system has infinitely many nontrivial solutions. Specially, our results cover the general Schrödinger equations, the Kirchhoff equations and the Schrödinger–Poisson system.
  相似文献   

20.
In this paper, we study the existence and multiplicity of solutions for the following fractional Schr¨odinger-Poisson system:ε~(2s)(-?)~su + V(x)u + ?u = |u|~2_s~*-2 u + f(u) in R~3,ε~(2s)(-?)~s? = u~2 in R~3,(0.1)where 3/4 s 1, 2_s~*:=6/(3-2s)is the fractional critical exponent for 3-dimension, the potential V : R~3→ R is continuous and has global minima, and f is continuous and supercubic but subcritical at infinity. We prove the existence and multiplicity of solutions for System(0.1) via variational methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号