首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let $k$ and $j$ be positive integers. We prove that the action of the two-dimensional singular integral operators $(S_\Omega )^{j-1}$ and $(S_\Omega ^*)^{j-1}$ on a Hilbert base for the Bergman space $\mathcal{A }^2(\Omega )$ and anti-Bergman space $\mathcal{A }^2_{-1}(\Omega ),$ respectively, gives Hilbert bases $\{ \psi _{\pm j , k } \}_{ k }$ for the true poly-Bergman spaces $\mathcal{A }_{(\pm j)}^2(\Omega ),$ where $S_\Omega $ denotes the compression of the Beurling transform to the Lebesgue space $L^2(\Omega , dA).$ The functions $\psi _{\pm j,k}$ will be explicitly represented in terms of the $(2,1)$ -hypergeometric polynomials as well as by formulas of Rodrigues type. We prove explicit representations for the true poly-Bergman kernels and more transparent representations for the poly-Bergman kernels of $\Omega $ . We establish Rodrigues type formulas for the poly-Bergman kernels of $\mathbb{D }$ .  相似文献   

2.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

3.
Given a eigenvalue $\mu _{0m}^2$ of $-\Delta $ in the unit ball $B_1$ , with Neumann boundary conditions, we prove that there exists a class $\mathcal{D}$ of $C^{0,1}$ -domains, depending on $\mu _{0m} $ , such that if $u$ is a no trivial solution to the following problem $ \Delta u+\mu u=0$ in $\Omega , u=0$ on $\partial \Omega $ , and $ \int \nolimits _{\partial \Omega }\partial _{\mathbf{n}}u=0$ , with $\Omega \in \mathcal{D}$ , and $\mu =\mu _{0m}^2+o(1)$ , then $\Omega $ is a ball. Here $\mu $ is a eigenvalue of $-\Delta $ in $\Omega $ , with Neumann boundary conditions.  相似文献   

4.
In this paper, we develop a continuous finite element method for the curlcurl-grad div vector second-order elliptic problem in a three-dimensional polyhedral domain occupied by discontinuous nonhomogeneous anisotropic materials. In spite of the fact that the curlcurl-grad div interface problem is closely related to the elliptic interface problem of vector Laplace operator type, the continuous finite element discretization of the standard variational problem of the former generally fails to give a correct solution even in the case of homogeneous media whenever the physical domain has reentrant corners and edges. To discretize the curlcurl-grad div interface problem by the continuous finite element method, we apply an element-local $L^2$ projector to the curl operator and a pseudo-local $L^2$ projector to the div operator, where the continuous Lagrange linear element enriched by suitable element and face bubbles may be employed. It is shown that the finite element problem retains the same coercivity property as the continuous problem. An error estimate $\mathcal{O }(h^r)$ in an energy norm is obtained between the analytical solution and the continuous finite element solution, where the analytical solution is in $\prod _{l=1}^L (H^r(\Omega _l))^3$ for some $r\in (1/2,1]$ due to the domain boundary reentrant corners and edges (e.g., nonconvex polyhedron) and due to the interfaces between the different material domains in $\Omega =\bigcup _{l=1}^L \Omega _l$ .  相似文献   

5.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

6.
Standard error analysis for grad-div stabilization of inf-sup stable conforming pairs of finite element spaces predicts that the stabilization parameter should be optimally chosen to be $\mathcal O(1)$ . This paper revisits this choice for the Stokes equations on the basis of minimizing the $H^{1}(\Omega )$ error of the velocity and the $L^{2}(\Omega )$ error of the pressure. It turns out, by applying a refined error analysis, that the optimal parameter choice is more subtle than known so far in the literature. It depends on the used norm, the solution, the family of finite element spaces, and the type of mesh. In particular, the approximation property of the pointwise divergence-free subspace plays a key role. With such an optimal approximation property and with an appropriate choice of the stabilization parameter, estimates for the $H^{1}(\Omega )$ error of the velocity are obtained that do not directly depend on the viscosity and the pressure. The minimization of the $L^{2}(\Omega )$ error of the pressure requires in many cases smaller stabilization parameters than the minimization of the $H^{1}(\Omega )$ velocity error. Altogether, depending on the situation, the optimal stabilization parameter could range from being very small to very large. The analytic results are supported by numerical examples. Applying the analysis to the MINI element leads to proposals for the stabilization parameter which seem to be new.  相似文献   

7.
8.
Let Ω denote the upper half-plane ${\mathbb{R}_+^2}$ or the upper half-disk ${D_{\varepsilon}^+\subset \mathbb{R}_+^2}$ of center 0 and radius ${\varepsilon}$ . In this paper we classify the solutions ${v\in\;C^2(\overline{\Omega}\setminus\{0\})}$ to the Neumann problem $$\left\{\begin{array}{lll}{\Delta v+2 Ke^v=0\quad {\rm in}\,\Omega\subseteq \mathbb{R}^2_+=\{(s, t)\in \mathbb{R}^2: t >0 \},}\\ {\frac{\partial v}{\partial t}=c_1e^{v/2}\quad\quad\quad{\rm on}\,\partial\Omega\cap\{s >0 \},}\\ {\frac{\partial v}{\partial t}=c_2e^{v/2}\quad\quad\quad{\rm on}\,\partial\Omega\cap\{s <0 \},}\end{array}\right.$$ where ${K, c_1, c_2 \in \mathbb{R}}$ , with the finite energy condition ${\int_{\Omega} e^v < \infty}$ As a result, we classify the conformal Riemannian metrics of constant curvature and finite area on a half-plane that have a finite number of boundary singularities, not assumed a priori to be conical, and constant geodesic curvature along each boundary arc.  相似文献   

9.
We treat the partial regularity of locally bounded local minimizers $u$ for the $p(x)$ -energy functional $$\begin{aligned} \mathcal{E }(v;\Omega ) = \int \left( g^{\alpha \beta }(x)h_{ij}(v) D_\alpha v^i (x) D_\beta v^j (x) \right) ^{p(x)/2} dx, \end{aligned}$$ defined for maps $v : \Omega (\subset \mathbb R ^m) \rightarrow \mathbb R ^n$ . Assuming the Lipschitz continuity of the exponent $p(x) \ge 2$ , we prove that $u \in C^{1,\alpha }(\Omega _0)$ for some $\alpha \in (0,1)$ and an open set $\Omega _0 \subset \Omega $ with $\dim _\mathcal{H }(\Omega \setminus \Omega _0) \le m-[\gamma _1]-1$ , where $\dim _\mathcal{H }$ stands for the Hausdorff dimension, $[\gamma _1]$ the integral part of $\gamma _1$ , and $\gamma _1 = \inf p(x)$ .  相似文献   

10.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

11.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

12.
Let $G$ denote a closed, connected, self-adjoint, noncompact subgroup of $GL(n,\mathbb R )$ , and let $d_{R}$ and $d_{L}$ denote respectively the right and left invariant Riemannian metrics defined by the canonical inner product on $M(n,\mathbb R ) = T_{I} GL(n,\mathbb R )$ . Let $v$ be a nonzero vector of $\mathbb R ^{n}$ such that the orbit $G(v)$ is unbounded in $\mathbb R ^{n}$ . Then the function $g \rightarrow d_{R}(g, G_{v})$ is unbounded, where $G_{v} = \{g \in G : g(v) = v \}$ , and we obtain algebraically defined upper and lower bounds $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ for the asymptotic behavior of the function $\frac{log|g(v)|}{d_{R}(g, G_{v})}$ as $d_{R}(g, G_{v}) \rightarrow \infty $ . The upper bound $\lambda ^{+}(v)$ is at most 1. The orbit $G(v)$ is closed in $\mathbb R ^{n} \Leftrightarrow \lambda ^{-}(w)$ is positive for some w $\in G(v)$ . If $G_{v}$ is compact, then $g \rightarrow |d_{R}(g,I) - d_{L}(g,I)|$ is uniformly bounded in $G$ , and the exponents $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ are sharp upper and lower asymptotic bounds for the functions $\frac{log|g(v)|}{d_{R}(g,I)}$ and $\frac{log|g(v)|}{d_{L}(g,I)}$ as $d_{R}(g,I) \rightarrow \infty $ or as $d_{L}(g,I) \rightarrow \infty $ . However, we show by example that if $G_{v}$ is noncompact, then there need not exist asymptotic upper and lower bounds for the function $\frac{log|g(v)|}{d_{L}(g, G_{v})}$ as $d_{L}(g, G_{v}) \rightarrow \infty $ . The results apply to representations of noncompact semisimple Lie groups $G$ on finite dimensional real vector spaces. We compute $\lambda ^{+}$ and $\lambda ^{-}$ for the irreducible, real representations of $SL(2,\mathbb R )$ , and we show that if the dimension of the $SL(2,\mathbb R )$ -module $V$ is odd, then $\lambda ^{+} = \lambda ^{-}$ on a nonempty open subset of $V$ . We show that the function $\lambda ^{-}$ is $K$ -invariant, where $K = O(n,\mathbb R ) \cap G$ . We do not know if $\lambda ^{-}$ is $G$ -invariant.  相似文献   

13.
14.
15.
16.
Denoting by ${\varepsilon\subseteq\mathbb{R}^2}$ the set of the pairs ${(\lambda_1(\Omega),\,\lambda_2(\Omega))}$ for all the open sets ${\Omega\subseteq\mathbb{R}^N}$ with unit measure, and by ${\Theta\subseteq\mathbb{R}^N}$ the union of two disjoint balls of half measure, we give an elementary proof of the fact that ${\partial\varepsilon}$ has horizontal tangent at its lowest point ${(\lambda_1(\Theta),\,\lambda_2(\Theta))}$ .  相似文献   

17.
We examine the fourth order problem $\Delta ^2 u = \lambda f(u) $ in $ \Omega $ with $ \Delta u = u =0 $ on $ {\partial \Omega }$ , where $ \lambda > 0$ is a parameter, $ \Omega $ is a bounded domain in $\mathbb{R }^N$ and where $f$ is one of the following nonlinearities: $ f(u)=e^u$ , $ f(u)=(1+u)^p $ or $ f(u)= \frac{1}{(1-u)^p}$ where $ p>1$ . We show the extremal solution is smooth, provided $$\begin{aligned} N < 2 + 4 \sqrt{2} + 4 \sqrt{ 2 - \sqrt{2}} \approx 10.718 \text{ when} f(u)=e^u, \end{aligned}$$ and $$\begin{aligned} N < \frac{4p}{p-1} + \frac{4(p+1)}{p-1} \left( \sqrt{ \frac{2p}{p+1}} + \sqrt{ \frac{2p}{p+1} - \sqrt{ \frac{2p}{p+1}}} - \frac{1}{2} \right) \end{aligned}$$ when $ f(u)=(u+1)^p$ . New results are also obtained in the case where $ f(u)=(1-u)^{-p}$ . These are substantial improvements to various results on critical dimensions obtained recently by various authors. To do that, we derive a new stability inequality satisfied by minimal solutions of the above equation, which is more amenable to estimates as it allows a method of proof reminiscent of the second order case.  相似文献   

18.
Let ?? be a bounded domain in ${\mathbb{R}^{n}, n\geq2}$ . We use ${\mathcal{M}_{\Omega}}$ to denote the collection of all pairs of (A, u) such that ${A\subset\Omega}$ is a set of finite perimeter and ${u\in H^{1}\left( \Omega\right)}$ satisfies $$u\left( x\right) =0\quad\text{a.e.}x\in A.$$ We consider the energy functional $$E_{\Omega}\left( A,u\right) =\int\limits_{\Omega}\left\vert\triangledown u\right\vert ^{2}+P_{\Omega}\left( A\right)$$ defined on ${\mathcal{M}_{\Omega}}$ , where P ??(A) denotes the perimeter of A inside ??. Let ${\left( A,u\right)\in\mathcal{M}_{\Omega}}$ be a minimizer with volume constraint. Our main result is that when n????7, u is locally Lipschitz and the free boundary ?A is analytic in ??.  相似文献   

19.
Let $(\lambda ^k_p)_k$ be the usual sequence of min-max eigenvalues for the $p$ -Laplace operator with $p\in (1,\infty )$ and let $(\lambda ^k_1)_k$ be the corresponding sequence of eigenvalues of the 1-Laplace operator. For bounded $\Omega \subseteq \mathbb{R }^n$ with Lipschitz boundary the convergence $\lambda ^k_p\rightarrow \lambda ^k_1$ as $p\rightarrow 1$ is shown for all $k\in \mathbb{N }$ . The proof uses an approximation of $BV(\Omega )$ -functions by $C_0^\infty (\Omega )$ -functions in the sense of strict convergence on $\mathbb{R }^n$ .  相似文献   

20.
We consider the Dirichlet problem for biharmonic maps u from a bounded, smooth domain ${\Omega\subset\mathbb R^n (n\ge 5)}$ to a compact, smooth Riemannian manifold ${N\subset{\mathbb {R}}^l}$ without boundary. For any smooth boundary data, we show that if u is a stationary biharmonic map that satisfies a certain boundary monotonicity inequality, then there exists a closed subset ${\Sigma\subset\overline{\Omega}}$ , with ${H^{n-4}(\Sigma)=0}$ , such that ${\displaystyle u\in C^\infty(\overline\Omega\setminus\Sigma, N)}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号