首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文主要研究了一类多项Caputo分数阶随机微分方程的Euler-Maruyama (EM)方法,并证明了其强收敛性.具体地,我们首先构造了求解多项Caputo分数阶随机微分方程初值问题的EM方法,然后证明分数阶导数的指标满足$\frac{1}{2}<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}<1$时,该方法是$\alpha_{m}-\alpha_{m-1}$阶强收敛的.文末的数值试验验证了理论结果的正确性.  相似文献   

2.
In this paper, Multiquadric quasi-interpolation method is used to approximate fractional integral equations and fractional differential equations. Firstly, we construct two operators for approximating the Hadamard integral-differential equation based on quasi interpolators, and verify their properties and order of convergence. Secondly, we obtain that the approximation order of the integral scheme is 3, and the approximation order of the differential scheme is $3-\mu$ for $\mu(0<\mu<1)$ order fractional Hadamard derivative. Finally, The results of numerical experiments show that the numerical results are in greement with the theoretical analysis.  相似文献   

3.
In this paper, a block-by-block numerical method is constructed for the impulsive fractional ordinary differential equations (IFODEs). Firstly, the stability and convergence analysis of the scheme are established. Secondly, the numerical solution which converges to the exact solution with order $3+\gamma$ for $0<\gamma<1$ is proved, where $\gamma$ is the order of the fractional derivative. Finally, a series of numerical examples are carried out to verify the correctness of the theoretical analysis.  相似文献   

4.
We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative. The method is developed by dividing the domain into a number of subintervals, and applying the quadratic interpolation on each subinterval. The method is shown to be unconditionally stable, and for general nonlinear equations, the uniform sharp numerical order 3 − $ν$ can be rigorously proven for sufficiently smooth solutions at all time steps. The proof provides a general guide for proving the sharp order for higher-order schemes in the nonlinear case. Some numerical examples are given to validate our theoretical results.  相似文献   

5.
The study of delay-fractional differential equations (fractional DEs) have recently attracted a lot of attention from scientists working on many different subjects dealing with mathematically modeling. In the study of fractional DEs the first question one might raise is whether the problem has a solution or not. Also, whether the problem is stable or not? In order to ensure the answer to these questions, we discuss the existence and uniqueness of solutions (EUS) and Hyers-Ulam stability (HUS) for our proposed problem, a nonlinear fractional DE with $p$-Laplacian operator and a non zero delay $\tau>0$ of order $n-1<\nu^*,\,\epsilon相似文献   

6.
An initial value problem of a class of semi-linear fractional order iterative differential equations is studied in this paper. The existence of solution for fractional order iterative differential equations is obtained in Banach space $C(J,J)$ and $C_{K,\alpha}(J,J)$ respectively. However, uniqueness results can not be acquired since the operator only is H\"{o}lder continuous but not Lipschitz continuous. Furthermore, a small perturbation of the initial value will cause a change in the solution on $[k,b]$ for the $k\in J$. Our analysis is based on Schauder"s fixed point theorem and the properties of Mittag-Leffler function. Finally, an example is given to illustrate our results.  相似文献   

7.
In this paper, a compact finite difference scheme with global convergence order $O(\tau^{2}+h^4)$ is derived for fourth-order fractional sub-diffusion equations subject to Neumann boundary conditions. The difficulty caused by the fourth-order derivative and Neumann boundary conditions is carefully handled. The stability and convergence of the proposed scheme are studied by the energy method. Theoretical results are supported by numerical experiments.  相似文献   

8.
This paper considers the unsteady boundary layer flow over a moving flat plate embedded in a porous medium with fractional Oldroyd-B viscoelastic fluid. The governing equations with mixed time-space fractional derivatives are solved numerically by using the finite difference method combined with an L1-algorithm. The effect of various physical parameters on the velocity and average skin friction are discussed and graphically illustrated in detail.Results show that the porosity € and fractional derivative α enhance the flow of Oldroyd-B viscoelastic fluid within porous medium, but fractional derivative βweakens the flow. Moreover, it is found that the average skin friction coefficient rises with the increase of fractional derivative β.  相似文献   

9.
As the generalization of the integer order partial differential equations (PDE), the fractional order PDEs are drawing more and more attention for their applications in fluid flow, finance and other areas. This paper presents high-order accurate Runge-Kutta local discontinuous Galerkin (DG) methods for one- and two-dimensional fractional diffusion equations containing derivatives of fractional order in space. The Caputo derivative is chosen as the representation of spatial derivative, because it may represent the fractional derivative by an integral operator. Some numerical examples show that the convergence orders of the proposed local $P^k$-DG methods are $O(h^{k+1})$ both in one and two dimensions, where $P^k$ denotes the space of the real-valued polynomials with degree at most $k$.  相似文献   

10.
In this paper, we propose a finite difference/collocation method for two-dimensional time fractional diffusion equation with generalized fractional operator. The main purpose of this paper is to design a high order numerical scheme for the new generalized time fractional diffusion equation. First, a finite difference approximation formula is derived for the generalized time fractional derivative, which is verified with order $2-\alpha$ $(0<\alpha<1)$. Then, collocation method is introduced for the two-dimensional space approximation. Unconditional stability of the scheme is proved. To make the method more efficient, the alternating direction implicit method is introduced to reduce the computational cost. At last, numerical experiments are carried out to verify the effectiveness of the scheme.  相似文献   

11.
空间-时间分数阶对流扩散方程的数值解法   总被引:1,自引:0,他引:1  
覃平阳  张晓丹 《计算数学》2008,30(3):305-310
本文考虑一个空间-时间分数阶对流扩散方程.这个方程是将一般的对流扩散方程中的时间一阶导数用α(0<α<1)阶导数代替,空间二阶导数用β(1<β<2)阶导数代替.本文提出了一个隐式差分格式,验证了这个格式是无条件稳定的,并证明了它的收敛性,其收敛阶为O(ι h).最后给出了数值例子.  相似文献   

12.
Here the broad study is depending on random integro-differential equations (RIDE) of arbitrary order. The fractional order is in terms of $\psi$-Hilfer fractional operator. This work reveals the dynamical behaviour such as existence, uniqueness and stability solutions for RIDE involving fractional order. Thus initial value problem (IVP), boundary value problem (BVP), impulsive effect and nonlocal conditions are taken in account to prove the results.  相似文献   

13.
This article concerns numerical approximation of a parabolic interface problem with general $L^2$ initial value. The problem is discretized by a finite element method with a quasi-uniform triangulation of the domain fitting the interface, with piecewise linear approximation to the interface. The semi-discrete finite element problem is furthermore discretized in time by the $k$-step backward difference formula with $ k=1,\ldots,6 $. To maintain high-order convergence in time for possibly nonsmooth $L^2$ initial value, we modify the standard backward difference formula at the first $k-1$ time levels by using a method recently developed for fractional evolution equations. An error bound of $\mathcal{O}(t_n^{-k}\tau^k+t_n^{-1}h^2|\log h|)$ is established for the fully discrete finite element method for general $L^2$ initial data.  相似文献   

14.
In this paper, we initiate the solvability and stability for a class of singular fractional $(p,q)$-difference equations. First, we obtain an existence theorem of solution for the fractional $(p,q)$-difference equation. Then, by using a fractional $(p,q)$-Gronwall inequality, some stability criteria of solution are established, which also implies the uniqueness of solution.  相似文献   

15.
In this paper, an efficient numerical method for solving the linear fractional Klein-Gordon equation (LFKGE) is introduced. The proposed method depends on the Galerkin finite element method (GFEM) using quadratic B-spline base functions and replaces the Caputo fractional derivative using $L2$ discretization formula. The introduced technique reduces LFKGE to a system of algebraic equations, which solved using conjugate gradient method. The study the stability analysis to the approximation obtained by the proposed scheme is given. To test the accuracy of the proposed method we evaluated the error norm $L_{2}$. It is shown that the presented scheme is unconditionally stable. Numerical example is given to show the validity and the accuracy of the introduced algorithm.  相似文献   

16.
In this article, differential transform method (DTM) has been successfully applied to obtain the approximate analytical solutions of the nonlinear homogeneous and non-homogeneous gas dynamic equations, shock wave equation and shallow water equations with fractional order time derivatives. The true beauty of the article is manifested in its emphatic application of Caputo fractional order time derivative on the classical equations with the achievement of the highly accurate solutions by the known series solutions and even for more complicated nonlinear fractional partial differential equations (PDEs). The method is really capable of reducing the size of the computational work besides being effective and convenient for solving fractional nonlinear equations. Numerical results for different particular cases of the equations are depicted through graphs.  相似文献   

17.
In this paper, the fractional complex transform and the $\left( \frac{G^{\prime }}{G}\right) $-expansion method are employed to solve the time-fractional modfied Korteweg-de Vries equation (fmKdV),Sharma-Tasso-Olver, Fitzhugh-Nagumo equations, where $G$ satisfies a second order linear ordinary differential equation. Exact solutions are expressed in terms of hyperbolic, trigonometric and rational functions. These solutions may be useful and desirable to explain some nonlinear physical phenomena in genuinely nonlinear fractional calculus.  相似文献   

18.
In this paper, we establish a novel fractional model arising in the chemical reaction and develop an efficient spectral method for the three-dimensional Riesz-like space fractional nonlinear coupled reaction-diffusion equations. Based on the backward difference method for time stepping and the Legendre-Galerkin spectral method for space discretization, we construct a fully discrete numerical scheme which leads to a linear algebraic system. Then a direct method based on the matrix diagonalization approach is proposed to solve the linear algebraic system, where the cost of the algorithm is of a small multiple of $N^4$ ($N$ is the polynomial degree in each spatial coordinate) flops for each time level. In addition, the stability and convergence analysis are rigorously established. We obtain the optimal error estimate in space, and the results also show that the fully discrete scheme is unconditionally stable and convergent of order one in time. Furthermore, numerical experiments are presented to confirm the theoretical claims. As the applications of the proposed method, the fractional Gray-Scott model is solved to capture the pattern formation with an analysis of the properties of the fractional powers.  相似文献   

19.
Due to the singularity and nonlocality of the fractional Laplacian, the classical tools such as Sturm comparison, Wronskians, Picard--Lindel\"{o}f iteration, and shooting arguments (which are all purely local concepts) are not{\ applicable} when analyzing solutions in the setting of the nonlocal operator $\left( -\Delta \right) ^{s}$. Furthermore, the nonlocal term of the Kirchhoff type equations will also cause some mathematical difficulties. The present work is motivated by the method of semi-classical problems which show that the existence of solutions of the Kirchhoff type equations are equivalent to the corresponding associated fractional differential and algebraic system. In such case, the existence of the fractional Kirchhoff equation can be obtained by using the corresponding fractional elliptic equation. Therefore some qualitative properties of solutions for the associated problems can be inherited. In particular, the classical uniqueness results can be applied to this equation.  相似文献   

20.
In this paper, we develop a two-grid method (TGM) based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations. A two-grid algorithm is proposed for solving the nonlinear system, which consists of two steps: a nonlinear FE system is solved on a coarse grid, then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution. The fully discrete numerical approximation is analyzed, where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with order $\alpha\in(1,2)$ and $\alpha_{1}\in(0,1)$. Numerical stability and optimal error estimate $O(h^{r+1}+H^{2r+2}+\tau^{\min\{3-\alpha,2-\alpha_{1}\}})$ in $L^{2}$-norm are presented for two-grid scheme, where $t,$ $H$ and $h$ are the time step size, coarse grid mesh size and fine grid mesh size, respectively. Finally, numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号