首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most regression modeling is based on traditional mean regression which results in non-robust estimation results for non-normal errors. Compared to conventional mean regression, composite quantile regression (CQR) may produce more robust parameters estimation. Based on a composite asymmetric Laplace distribution (CALD), we build a Bayesian hierarchical model for the weighted CQR (WCQR). The Gibbs sampler algorithm of Bayesian WCQR is developed to implement posterior inference. Finally, the proposed method are illustrated by some simulation studies and a real data analysis.  相似文献   

2.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

3.
A multiple‐regime threshold nonlinear financial time series model, with a fat‐tailed error distribution, is discussed and Bayesian estimation and inference are considered. Furthermore, approximate Bayesian posterior model comparison among competing models with different numbers of regimes is considered which is effectively a test for the number of required regimes. An adaptive Markov chain Monte Carlo (MCMC) sampling scheme is designed, while importance sampling is employed to estimate Bayesian residuals for model diagnostic testing. Our modeling framework provides a parsimonious representation of well‐known stylized features of financial time series and facilitates statistical inference in the presence of high or explosive persistence and dynamic conditional volatility. We focus on the three‐regime case where the main feature of the model is to capturing of mean and volatility asymmetries in financial markets, while allowing an explosive volatility regime. A simulation study highlights the properties of our MCMC estimators and the accuracy and favourable performance as a model selection tool, compared with a deviance criterion, of the posterior model probability approximation method. An empirical study of eight international oil and gas markets provides strong support for the three‐regime model over its competitors, in most markets, in terms of model posterior probability and in showing three distinct regime behaviours: falling/explosive, dormant and rising markets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Generalized additive models for location, scale and, shape define a flexible, semi-parametric class of regression models for analyzing insurance data in which the exponential family assumption for the response is relaxed. This approach allows the actuary to include risk factors not only in the mean but also in other key parameters governing the claiming behavior, like the degree of residual heterogeneity or the no-claim probability. In this broader setting, the Negative Binomial regression with cell-specific heterogeneity and the zero-inflated Poisson regression with cell-specific additional probability mass at zero are applied to model claim frequencies. New models for claim severities that can be applied either per claim or aggregated per year are also presented. Bayesian inference is based on efficient Markov chain Monte Carlo simulation techniques and allows for the simultaneous estimation of linear effects as well as of possible nonlinear effects, spatial variations and interactions between risk factors within the data set. To illustrate the relevance of this approach, a detailed case study is proposed based on the Belgian motor insurance portfolio studied in Denuit and Lang (2004).  相似文献   

5.
This article proposes a four-pronged approach to efficient Bayesian estimation and prediction for complex Bayesian hierarchical Gaussian models for spatial and spatiotemporal data. The method involves reparameterizing the covariance structure of the model, reformulating the means structure, marginalizing the joint posterior distribution, and applying a simplex-based slice sampling algorithm. The approach permits fusion of point-source data and areal data measured at different resolutions and accommodates nonspatial correlation and variance heterogeneity as well as spatial and/or temporal correlation. The method produces Markov chain Monte Carlo samplers with low autocorrelation in the output, so that fewer iterations are needed for Bayesian inference than would be the case with other sampling algorithms. Supplemental materials are available online.  相似文献   

6.
本文主要研究广义非参数模型B样条Bayes估计 .将回归函数按照B样条基展开 ,我们不具体选择节点的个数 ,而是节点个数取均匀的无信息先验 ,样条函数系数取正态先验 ,用B样条函数的后验均值估计回归函数 .并给出了回归函数B样条Bayes估计的MCMC的模拟计算方法 .通过对Logistic非参数回归的模拟研究 ,表明B样条Bayes估计得到了很好的估计效果  相似文献   

7.
When the data has heavy tail feature or contains outliers, conventional variable selection methods based on penalized least squares or likelihood functions perform poorly. Based on Bayesian inference method, we study the Bayesian variable selection problem for median linear models. The Bayesian estimation method is proposed by using Bayesian model selection theory and Bayesian estimation method through selecting the Spike and Slab prior for regression coefficients, and the effective posterior Gibbs sampling procedure is also given. Extensive numerical simulations and Boston house price data analysis are used to illustrate the effectiveness of the proposed method.  相似文献   

8.
An efficient algorithm for the determination of Bayesian optimal discriminating designs for competing regression models is developed, where the main focus is on models with general distributional assumptions beyond the “classical” case of normally distributed homoscedastic errors. For this purpose, we consider a Bayesian version of the Kullback–Leibler (KL). Discretizing the prior distribution leads to local KL-optimal discriminating design problems for a large number of competing models. All currently available methods either require a large amount of computation time or fail to calculate the optimal discriminating design, because they can only deal efficiently with a few model comparisons. In this article, we develop a new algorithm for the determination of Bayesian optimal discriminating designs with respect to the Kullback–Leibler criterion. It is demonstrated that the new algorithm is able to calculate the optimal discriminating designs with reasonable accuracy and computational time in situations where all currently available procedures are either slow or fail.  相似文献   

9.
In this article we study penalized regression splines (P-splines), which are low-order basis splines with a penalty to avoid undersmoothing. Such P-splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. Our approach is to model the penalty parameter inherent in the P-spline method as a heteroscedastic regression function. We develop a full Bayesian hierarchical structure to do this and use Markov chain Monte Carlo techniques for drawing random samples from the posterior for inference. The advantage of using a Bayesian approach to P-splines is that it allows for simultaneous estimation of the smooth functions and the underlying penalty curve in addition to providing uncertainty intervals of the estimated curve. The Bayesian credible intervals obtained for the estimated curve are shown to have pointwise coverage probabilities close to nominal. The method is extended to additive models with simultaneous spline-based penalty functions for the unknown functions. In simulations, the approach achieves very competitive performance with the current best frequentist P-spline method in terms of frequentist mean squared error and coverage probabilities of the credible intervals, and performs better than some of the other Bayesian methods.  相似文献   

10.
??When the data has heavy tail feature or contains outliers, conventional variable selection methods based on penalized least squares or likelihood functions perform poorly. Based on Bayesian inference method, we study the Bayesian variable selection problem for median linear models. The Bayesian estimation method is proposed by using Bayesian model selection theory and Bayesian estimation method through selecting the Spike and Slab prior for regression coefficients, and the effective posterior Gibbs sampling procedure is also given. Extensive numerical simulations and Boston house price data analysis are used to illustrate the effectiveness of the proposed method.  相似文献   

11.
This paper develops a Bayesian approach to analyzing quantile regression models for censored dynamic panel data. We employ a likelihood-based approach using the asymmetric Laplace error distribution and introduce lagged observed responses into the conditional quantile function. We also deal with the initial conditions problem in dynamic panel data models by introducing correlated random effects into the model. For posterior inference, we propose a Gibbs sampling algorithm based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the mixture representation provides fully tractable conditional posterior densities and considerably simplifies existing estimation procedures for quantile regression models. In addition, we explain how the proposed Gibbs sampler can be utilized for the calculation of marginal likelihood and the modal estimation. Our approach is illustrated with real data on medical expenditures.  相似文献   

12.
Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.  相似文献   

13.
Many processes can be represented in a simple form as infinite-order linear series. In such cases, an approximate model is often derived as a truncation of the infinite-order process, for estimation on the finite sample. The literature contains a number of asymptotic distributional results for least squares estimation of such finite truncations, but for quantile estimation, results are not available at a level of generality that accommodates time series models used as finite approximations to processes of potentially unbounded order. Here we establish consistency and asymptotic normality for conditional quantile estimation of truncations of such infinite-order linear models, with the truncation order increasing in sample size. We focus on estimation of the model at a given quantile. The proofs use the generalized functions approach and allow for a wide range of time series models as well as other forms of regression model. The results are illustrated with both analytical and simulation examples.  相似文献   

14.
In this paper, we address the problem of learning discrete Bayesian networks from noisy data. A graphical model based on a mixture of Gaussian distributions with categorical mixing structure coming from a discrete Bayesian network is considered. The network learning is formulated as a maximum likelihood estimation problem and performed by employing an EM algorithm. The proposed approach is relevant to a variety of statistical problems for which Bayesian network models are suitable—from simple regression analysis to learning gene/protein regulatory networks from microarray data.  相似文献   

15.
Abstract

We demonstrate how case influence analysis, commonly used in regression, can be applied to Bayesian hierarchical models. Draws from the joint posterior distribution of parameters are importance weighted to reflect the effect of deleting each observation in turn; the ensuing changes in the posterior distribution of each parameter are displayed graphically. The procedure is particularly useful when drawing a sample from the posterior distribution requires extensive calculations (as with a Markov Chain Monte Carlo sampler). The structure of hierarchical models, and other models with local dependence, makes the importance weights inexpensive to calculate with little additional programming. Some new alternative weighting schemes are described that extend the range of problems in which reweighting can be used to assess influence. Applications to a growth curve model and a complex hierarchical model for opinion data are described. Our focus on case influence on parameters is complementary to other work that measures influence by distances between posterior or predictive distributions.  相似文献   

16.
提出了广义变系数模型函数系数的一种新的估计方法.我们用B样条函数逼近函数系数,不具体选择节点的个数,而是节点个数取均匀的无信息先验,样条函数系数取正态先验,用Bayesian模型平均的方法估计各个函数系数.这种估计方法一个主要特点是允许各个函数系数所需节点个数的后验分布不同,因此允许不同函数系数使用不同的光滑参数.另外,本文还给出了Bayesian B样条估计的计算方法,并通过模拟例子,说明广义变系数模型的函数系数可以由Bayesian B样条估计方法得到很好的估计.  相似文献   

17.
本文研究了不等式约束条件下部分线性回归模型的参数估计问题,利用最优化方法和贝叶斯方法,给出了不等式约束条件下部分线性回归模型的最小二乘核估计和最佳贝叶斯估计,并且证明了在一定条件下,带约束条件的最小二乘核估计在均方误差意义下要优于无约束条件的最小二乘核估计。  相似文献   

18.
In this paper, a Bayesian hierarchical model for variable selection and estimation in the context of binary quantile regression is proposed. Existing approaches to variable selection in a binary classification context are sensitive to outliers, heteroskedasticity or other anomalies of the latent response. The method proposed in this study overcomes these problems in an attractive and straightforward way. A Laplace likelihood and Laplace priors for the regression parameters are proposed and estimated with Bayesian Markov Chain Monte Carlo. The resulting model is equivalent to the frequentist lasso procedure. A conceptional result is that by doing so, the binary regression model is moved from a Gaussian to a full Laplacian framework without sacrificing much computational efficiency. In addition, an efficient Gibbs sampler to estimate the model parameters is proposed that is superior to the Metropolis algorithm that is used in previous studies on Bayesian binary quantile regression. Both the simulation studies and the real data analysis indicate that the proposed method performs well in comparison to the other methods. Moreover, as the base model is binary quantile regression, a much more detailed insight in the effects of the covariates is provided by the approach. An implementation of the lasso procedure for binary quantile regression models is available in the R-package bayesQR.  相似文献   

19.
Flexible modelling of the response variance in regression is interesting for understanding the causes of variability in the responses, and is crucial for efficient estimation and correct inference for mean parameters. In this paper we describe methods for mean and variance estimation where the responses are modelled using the double exponential family of distributions and mean and dispersion parameters are described as an additive function of predictors. The additive terms in the model are represented by penalized splines. A simple and unified computational methodology is presented for carrying out the calculations required for Bayesian inference in this class of models based on an adaptive Metropolis algorithm. Application of the adaptive Metropolis algorithm is fully automatic and does not require any kind of pretuning runs. The methodology presented provides flexible methods for modelling heterogeneous Gaussian data, as well as overdispersed and underdispersed count data. Performance is considered in a variety of examples involving real and simulated data sets.  相似文献   

20.
Pair-copula Bayesian networks (PCBNs) are a novel class of multivariate statistical models, which combine the distributional flexibility of pair-copula constructions (PCCs) with the parsimony of conditional independence models associated with directed acyclic graphs (DAGs). We are first to provide generic algorithms for random sampling and likelihood inference in arbitrary PCBNs as well as for selecting orderings of the parents of the vertices in the underlying graphs. Model selection of the DAG is facilitated using a version of the well-known PC algorithm that is based on a novel test for conditional independence of random variables tailored to the PCC framework. A simulation study shows the PC algorithm’s high aptitude for structure estimation in non-Gaussian PCBNs. The proposed methods are finally applied to modeling financial return data. Supplementary materials for this article are available online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号