首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
通过求解函数方程,给出了一种获得各向异性线性平面梁弹性解的新方法,该方法可以考虑任意形式的荷载以及各种端部支撑条件.将该方法与传统的逆解法或者半逆解法比较,其最大的好处在于不需要猜测应力函数的形式而直接获得问题的精确解.算例验证了该方法的正确性,同时也提供了一种求解平面梁承受任意荷载的新思路.  相似文献   

2.
In the present work, attention is focused on the prediction of thermal buckling and post-buckling behaviors of functionally graded materials (FGM) beams based on Euler–Bernoulli, Timoshenko and various higher-order shear deformation beam theories. Two ends of the beam are assumed to be clamped and in-plane boundary conditions are immovable. The beam is subjected to uniform temperature rise and temperature dependency of the constituents is also taken into account. The governing equations are developed relative to neutral plane and mid-plane of the beam. A two-step perturbation method is employed to determine the critical buckling loads and post-buckling equilibrium paths. New results of thermal buckling and post-buckling analysis of the beams are presented and discussed in details, the numerical analysis shows that, for the case of uniform temperature rise loading, the post-buckling equilibrium path for FGM beam with two clamped ends is also of the bifurcation type for any arbitrary value of the power law index and any various displacement fields.  相似文献   

3.
A two-dimensional analysis is presented for piezoelectric beam with variable thickness which is simply supported and grounded along its two ends. According to the governing equations of plane stress problems, the displacement solutions, which exactly satisfy the governing differential equations and the simply-supported boundary conditions at two ends of the beam, are derived. The unknown coefficients in the solution are then determined by using the Fourier sinusoidal series expansion to the boundary equations on the upper and lower surfaces of the beams. The present solutions show a good convergence and the numerical results are presented and compared with those available in the literature. The method could be applied to control engineering and other projects with highly accurate demand on stress and displacement analysis such as the design of micro-mechanical apparatuses.  相似文献   

4.
Two-dimensional thermoelastic analysis for simply supported beams with variable thickness and subjected to thermo-mechanical loads is investigated. An approximate analytical method is proposed. Firstly, the heat conduction equation is analytically solved to obtain the temperature distributions for two kinds of boundary conditions at the beam ends, which are the harmonic series with unknown coefficients. Then the two-dimensional equilibrium differential equations are analytically solved to obtain the displacement component series with unknown coefficients and the stress component series is obtained. The unknown coefficients in the temperature series and the stress component series are approximately determined by using the upper surface and lower surface conditions of the beam. With the proposed procedure, the solutions satisfy the governing differential equations, the loading conditions, and the simply supported end conditions. The proposed solution method shows a good convergence and the results agree well with those obtained from the commercial finite element software ANSYS. Several examples are used to demonstrate the effectiveness of the proposed solution method. The simultaneous effects of temperature change and applied mechanical load on the behavior of the beam are examined.  相似文献   

5.
Using the property of Papkovich generalized orthogonality of eigenfunctions, we develop a method of satisfying the boundary conditions on the lateral surface of a cylinder. The stresses and displacements in a finite cylinder with homogeneous conditions on the ends are represented in terms of the axial displacement. The solution is constructed as an expansion in a series of eigenfunctions of the corresponding homogeneous boundary-value problem. We find a class of boundary conditions that admits a solution of the problem without reduction to an infinite system of algebraic equations. Translated fromMatematichni Metodi ta Fiziko-mekhanichni Polya, Vol. 39, No. 1, 1996, pp. 135–139.  相似文献   

6.
Buckling analysis of functionally graded micro beams based on modified couple stress theory is presented. Three different beam theories, i.e. classical, first and third order shear deformation beam theories, are considered to study the effect of shear deformations. To present a profound insight on the effect of boundary conditions, beams with hinged-hinged, clamped–clamped and clamped–hinged ends are studied. Governing equations and boundary conditions are derived using principle of minimum potential energy. Afterwards, generalized differential quadrature (GDQ) method is applied to solve the obtained differential equations. Some numerical results are presented to study the effects of material length scale parameter, beam thickness, Poisson ratio and power index of material distribution on size dependent buckling load. It is observed that buckling loads predicted by modified couple stress theory deviates significantly from classical ones, especially for thin beams. It is shown that size dependency of FG micro beams differs from isotropic homogeneous micro beams as it is a function of power index of material distribution. In addition, the general trend of buckling load with respect to Poisson ratio predicted by the present model differs from classical one.  相似文献   

7.
In this paper, the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler–Bernoulli beam resonators, due to time harmonic load have been investigated. The axial ends of the beam are assumed to be at either clamped-clamped, simply supported-simply supported or clamped-free conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection. The numerical simulation has been carried out with the help of MATLAB software for magnesium like material. The graphical representations and observations have been discussed for deflection of beam under various boundary conditions and for distinct considered values of time and space as well.  相似文献   

8.
In this paper, minimum-weight design of an elastic sandwich beam with a prescribed deflection constraint at a given point is investigated. The analysis is based on geometrical considerations using then-dimensional space of discretized specific bending stiffness. Since the present method of analysis is different from the method based on the calculus of variations, the conditions of piecewise continuity and differentiability on specific bending stiffness can be relaxed. Necessary and sufficient conditions for optimality are derived for both statically determinate and statically indeterminate beams. Beams subject to a single loading and beams subject to multiple loadings are analyzed. The degree to which the optimality condition renders the solution unique is discussed. To illustrate the method of solution, two examples are presented for minimum-weight designs under dual loading of a simply supported beam and a beam built in at both ends. The present analysis is also extended to the following problems: (a) optimal design of a beam built in at both ends with piecewise specific stiffness and a prescribed deflection constraint and (b) minimum-cost design of a sandwich beam with prescribed deflection constraints.The results presented in this paper were obtained in the course of research supported partly by the US Army Research Office, Durham, North Carolina, Research Grant No. DA-ARO-31-G1008, and partly by the Office of Naval Research, Contract No. N00014-67-A-0109-0003, Task No. NR 064-496. The authors wish to express their thanks to Professor H. Halkin for pointing out the applicability of optimal control theory to the present problem and to Professor W. Prager for his valuable suggestions.  相似文献   

9.
We consider a problem of boundary stabilization of small flexural vibrations of a flexible structure modeled by an Euler-Bernoulli beam which is held by a rigid hub at one end and totally free at the other. The hub dynamics leads to a hybrid system of equations. By incorporating a condition of small rate of change of the deflection with respect tox as well ast, over the length of the beam, for appropriate initial conditions, uniform exponential decay of energy is established when a viscous boundary damping is present at the hub end.  相似文献   

10.
Continuing in the vein of a recently developed generalization of continuum thermomechanics, in this paper we extend fracture mechanics and beam mechanics to materials described by fractional integrals involving D, d and R. By introducing a product measure instead of a Riesz measure, so as to ensure that the mechanical approach to continuum mechanics is consistent with the energetic approach, specific forms of continuum-type equations are derived. On this basis we study the energy aspects of fracture and, as an example, a Timoshenko beam made of a fractal material; the local form of elastodynamic equations of that beam is derived. In particular, we review the crack driving force G stemming from the Griffith fracture criterion in fractal media, considering either dead-load or fixed-grip conditions and the effects of ensemble averaging over random fractal materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号