首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Regular and distance-regular characterizations of general graphs are well-known. In particular, the spectral excess theorem states that a connected graph ΓΓ is distance-regular if and only if its spectral excess (a number that can be computed from the spectrum) equals the average excess (the mean of the numbers of vertices at extremal distance from every vertex). The aim of this paper is to derive new characterizations of regularity and distance-regularity for the more restricted family of bipartite graphs. In this case, some characterizations of (bi)regular bipartite graphs are given in terms of the mean degrees in every partite set and the Hoffman polynomial. Moreover, it is shown that the conditions for having distance-regularity in such graphs can be relaxed when compared with general graphs. Finally, a new version of the spectral excess theorem for bipartite graphs is presented.  相似文献   

2.
3.
A t-walk-regular graph is a graph for which the number of walks of given length between two vertices depends only on the distance between these two vertices, as long as this distance is at most t. Such graphs generalize distance-regular graphs and t-arc-transitive graphs. In this paper, we will focus on 1- and in particular 2-walk-regular graphs, and study analogues of certain results that are important for distance-regular graphs. We will generalize Delsarte?s clique bound to 1-walk-regular graphs, Godsil?s multiplicity bound and Terwilliger?s analysis of the local structure to 2-walk-regular graphs. We will show that 2-walk-regular graphs have a much richer combinatorial structure than 1-walk-regular graphs, for example by proving that there are finitely many non-geometric 2-walk-regular graphs with given smallest eigenvalue and given diameter (a geometric graph is the point graph of a special partial linear space); a result that is analogous to a result on distance-regular graphs. Such a result does not hold for 1-walk-regular graphs, as our construction methods will show.  相似文献   

4.
Edge-distance-regularity is a concept recently introduced by the authors which is similar to that of distance-regularity, but now the graph is seen from each of its edges instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is edge-distance-regular when it is distance-regular around each of its edges and with the same intersection numbers for any edge taken as a root. In this paper we study this concept, give some of its properties, such as the regularity of Γ, and derive some characterizations. In particular, it is shown that a graph is edge-distance-regular if and only if its k-incidence matrix is a polynomial of degree k in A multiplied by the (standard) incidence matrix. Also, the analogue of the spectral excess theorem for distance-regular graphs is proved, so giving a quasi-spectral characterization of edge-distance-regularity. Finally, it is shown that every nonbipartite graph which is both distance-regular and edge-distance-regular is a generalized odd graph.  相似文献   

5.
We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let \(\Gamma \) be a graph with vertex set V, diameter D, adjacency matrix \(\varvec{A}\), and adjacency algebra \(\mathcal{A}\). Then, \(\Gamma \) is distance mean-regular when, for a given \(u\in V\), the averages of the intersection numbers \(p_{ij}^h(u,v)=|\Gamma _i(u)\cap \Gamma _j(v)|\) (number of vertices at distance i from u and distance j from v) computed over all vertices v at a given distance \(h\in \{0,1,\ldots ,D\}\) from u, do not depend on u. In this work we study some properties and characterizations of these graphs. For instance, it is shown that a distance mean-regular graph is always distance degree-regular, and we give a condition for the converse to be also true. Some algebraic and spectral properties of distance mean-regular graphs are also investigated. We show that, for distance mean regular-graphs, the role of the distance matrices of distance-regular graphs is played for the so-called distance mean-regular matrices. These matrices are computed from a sequence of orthogonal polynomials evaluated at the adjacency matrix of \(\Gamma \) and, hence, they generate a subalgebra of \(\mathcal{A}\). Some other algebras associated to distance mean-regular graphs are also characterized.  相似文献   

6.
A graph X is walk-regular if the vertex-deleted subgraphs of X all have the same characteristic polynomial. Examples of such graphs are vertex-transitive graphs and distance-regular graphs. We show that the usual feasibility conditions for the existence of a distance-regular graph with a given intersection array can be extended so that they apply to walk-regular graphs. Despite the greater generality, our proofs are more elementary than those usually given for distance-regular graphs. An application to the computation of vertex-transitive graphs is described.  相似文献   

7.
8.
In this paper we show that certain almost distance-regular graphs, the so-called h-punctually walk-regular graphs, can be characterized through the cospectrality of their perturbed graphs. A graph G with diameter D is called h-punctually walk-regular, for a given hD, if the number of paths of length ? between a pair of vertices u,v at distance h depends only on ?. The graph perturbations considered here are deleting a vertex, adding a loop, adding a pendant edge, adding/removing an edge, amalgamating vertices, and adding a bridging vertex. We show that for walk-regular graphs some of these operations are equivalent, in the sense that one perturbation produces cospectral graphs if and only if the others do. Our study is based on the theory of graph perturbations developed by Cvetkovi?, Godsil, McKay, Rowlinson, Schwenk, and others. As a consequence, some new characterizations of distance-regular graphs are obtained.  相似文献   

9.
A divisible design graph is a graph whose adjacency matrix is the incidence matrix of a divisible design. Divisible design graphs are a natural generalization of (v,k,λ)-graphs, and like (v,k,λ)-graphs they make a link between combinatorial design theory and algebraic graph theory. The study of divisible design graphs benefits from, and contributes to, both parts. Using information of the eigenvalues of the adjacency matrix, we obtain necessary conditions for existence. Old results of Bose and Connor on symmetric divisible designs give other conditions and information on the structure. Many constructions are given using various combinatorial structures, such as (v,k,λ)-graphs, distance-regular graphs, symmetric divisible designs, Hadamard matrices, and symmetric balanced generalized weighing matrices. Several divisible design graphs are characterized in terms of the parameters.  相似文献   

10.
We study the amply regular diameter d graphs Γ such that for some vertex a the set of vertices at distance d from a is the set of points of a 2-design whose set of blocks consists of the intersections of the neighborhoods of points with the set of vertices at distance d-1 from a. We prove that the subgraph induced by the set of points is a clique, a coclique, or a strongly regular diameter 2 graph. For diameter 3 graphs we establish that this construction is a 2-design for each vertex a if and only if the graph is distance-regular and for each vertex a the subgraph Γ3(a) is a clique, a coclique, or a strongly regular graph. We obtain the list of admissible parameters for designs and diameter 3 graphs under the assumption that the subgraph induced by the set of points is a Seidel graph. We show that some of the parameters found cannot correspond to distance-regular graphs.  相似文献   

11.
Many known distance-regular graphs have extra combinatorial regularities: One of them is t-homogeneity. A bipartite or almost bipartite distance-regular graph is 2-homogeneous if the number γ i  = |{x | ∂(u, x) = ∂(v, x) = 1 and ∂(w, x) = i − 1}| (i = 2, 3,..., d) depends only on i whenever ∂(u, v) = 2 and ∂(u, w) = ∂(v, w) = i. K. Nomura gave a complete classification of bipartite and almost bipartite 2-homogeneous distance-regular graphs. In this paper, we generalize Nomura’s results by classifying 2-homogeneous triangle-free distance-regular graphs. As an application, we show that if Γ is a distance-regular graph of diameter at least four such that all quadrangles are completely regular then Γ is isomorphic to a binary Hamming graph, the folded graph of a binary Hamming graph or the coset graph of the extended binary Golay code of valency 24. We also consider the case Γ is a parallelogram-free distance-regular graph. This research was partially supported by the Grant-in-Aid for Scientific Research (No.17540039), Japan Society of the Promotion of Science.  相似文献   

12.
Qian Kong 《Discrete Mathematics》2010,310(24):3523-3527
Let Γ denote a distance-regular graph with a strongly closed regular subgraph Y. Hosoya and Suzuki [R. Hosoya, H. Suzuki, Tight distance-regular graphs with respect to subsets, European J. Combin. 28 (2007) 61-74] showed an inequality for the second largest and least eigenvalues of Γ in the case Y is of diameter 2. In this paper, we study the case when Γ is bipartite and Y is of diameter 3, and obtain an inequality for the second largest eigenvalue of Γ. Moreover, we characterize the distance-regular graphs with a completely regular strongly closed subgraph H(3,2).  相似文献   

13.
Brouwer, Godsil, Koolen and Martin [Width and dual width of subsets in polynomial association schemes, J. Combin. Theory Ser. A 102 (2003) 255-271] introduced the width w and the dual width w* of a subset in a distance-regular graph and in a cometric association scheme, respectively, and then derived lower bounds on these new parameters. For instance, subsets with the property w+w*=d in a cometric distance-regular graph with diameter d attain these bounds. In this paper, we classify subsets with this property in Grassmann graphs, bilinear forms graphs and dual polar graphs. We use this information to establish the Erd?s-Ko-Rado theorem in full generality for the first two families of graphs.  相似文献   

14.
We study the quasi-strongly regular graphs, which are a combinatorial generalization of the strongly regular and the distance regular graphs. Our main focus is on quasi-strongly regular graphs of grade 2. We prove a “spectral gap”-type result for them which generalizes Seidel's well-known formula for the eigenvalues of a strongly regular graph. We also obtain a number of necessary conditions for the feasibility of parameter sets and some structural results. We propose the heuristic principle that the quasi-strongly regular graphs can be viewed as a “lower-order approximation” to the distance regular graphs. This idea is illustrated by extending a known result from the distance-regular case to the quasi-strongly regular case. Along these lines, we propose a number of conjectures and open problems. Finally, we list the all the proper connected quasi-strongly graphs of grade 2 with up to 12 vertices.  相似文献   

15.
In this paper, we classify distance regular graphs such that all of its second largest local eigenvalues are at most one. Also we discuss the consequences for the smallest eigenvalue of a distance-regular graph. These extend a result by the first author, who classified the distance-regular graphs with smallest eigenvalue .  相似文献   

16.
Let \(\Gamma \) be a distance-regular graph with diameter d and Kneser graph \(K=\Gamma _d\), the distance-d graph of \(\Gamma \). We say that \(\Gamma \) is partially antipodal when K has fewer distinct eigenvalues than \(\Gamma \). In particular, this is the case of antipodal distance-regular graphs (K with only two distinct eigenvalues) and the so-called half-antipodal distance-regular graphs (K with only one negative eigenvalue). We provide a characterization of partially antipodal distance-regular graphs (among regular graphs with \(d+1\) distinct eigenvalues) in terms of the spectrum and the mean number of vertices at maximal distance d from every vertex. This can be seen as a more general version of the so-called spectral excess theorem, which allows us to characterize those distance-regular graphs which are half-antipodal, antipodal, bipartite, or with Kneser graph being strongly regular.  相似文献   

17.
We characterize the distance-regular graphs with diameter three by giving an expression for the number of vertices at distance two from each given vertex, in terms of the spectrum of the graph.  相似文献   

18.
The connective constant μ(G) of a quasi-transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. We prove a locality theorem for connective constants, namely, that the connective constants of two graphs are close in value whenever the graphs agree on a large ball around the origin (and a further condition is satisfied). The proof is based on a generalized bridge decomposition of self-avoiding walks, which is valid subject to the assumption that the underlying graph is quasi-transitive and possesses a so-called unimodular graph height function.  相似文献   

19.
An important property of strongly regular graphs is that the second subconstituent of any primitive strongly regular graph is always connected. Brouwer asked to what extent this statement can be generalized to distance-regular graphs. In this paper, we show that if γ is any vertex of a distance-regular graph Γ and t is the index where the standard sequence corresponding to the second largest eigenvalue of Γ changes sign, then the subgraph induced by the vertices at distance at least t from γ, is connected.  相似文献   

20.
Terwilliger [15] has given the diameter bound d (s – 1)(k – 1) + 1 for distance-regular graphs with girth 2s and valency k. We show that the only distance-regular graphs with even girth which reach this bound are the hypercubes and the doubled Odd graphs. Also we improve this bound for bipartite distance-regular graphs. Weichsel [17] conjectures that the only distance-regular subgraphs of a hypercube are the even polygons, the hypercubes and the doubled Odd graphs and proves this in the case of girth 4. We show that the only distance-regular subgraphs of a hypercube with girth 6 are the doubled Odd graphs. If the girth is equal to 8, then its valency is at most 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号