首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Γ be a distance-regular graph of diameter d ≥ 3 with c 2 > 1. Let m be an integer with 1 ≤ md − 1. We consider the following conditions:
  (SC) m : For any pair of vertices at distance m there exists a strongly closed subgraph of diameter m containing them.
  (BB) m : Let (x, y, z) be a triple of vertices with ∂ Γ (x, y) = 1 and ∂ Γ (x, z) = ∂ Γ (y, z)  =  m. Then B(x, z) = B(y, z).
  (CA) m : Let (x, y, z) be a triple of vertices with ∂ Γ (x, y) = 2, ∂ Γ (x, z) = ∂ Γ (y, z) = m and |C(z, x) ∩ C(z, y)| ≥ 2. Then C(x, z) ∪ A(x, z) = C(y, z) ∪ A(y, z).
Suppose that the condition (SC) m holds. Then it has been known that the condition (BB) i holds for all i with 1 ≤ im. Similarly we can show that the condition (CA) i holds for all i with 1 ≤ im. In this paper we prove that if the conditions (BB) i and (CA) i hold for all i with 1 ≤ im, then the condition (SC) m holds. Applying this result we give a sufficient condition for the existence of a dual polar graph as a strongly closed subgraph in Γ.  相似文献   

2.
 Let Γ=(X,R) denote a distance-regular graph with diameter D≥2 and distance function δ. A (vertex) subgraph Ω⊆X is said to be weak-geodetically closed whenever for all x,y∈Ω and all zX,
We show that if the intersection number c 2>1 then any weak-geodetically closed subgraph of X is distance-regular. Γ is said to be i-bounded, whenever for all x,yX at distance δ(x,y)≤i,x,y are contained in a common weak-geodetically closed subgraph of Γ of diameter δ(x,y). By a parallelogram of length i, we mean a 4-tuple xyzw of vertices in X such that δ(x,y)=δ(z,w)=1, δ(x,w)=i, and δ(x,z)=δ(y,z)=δ(y,w)=i−1. We prove the following two theorems. Theorem 1. LetΓdenote a distance-regular graph with diameter D≥2, and assume the intersection numbers c 2>1, a 1≠0. Then for each integer i (1≤iD), the following (i)–(ii) are equivalent. (i)*Γis i-bounded. (ii)*Γcontains no parallelogram of lengthi+1. Restricting attention to the Q-polynomial case, we get the following stronger result. Theorem 2. Let Γ denote a distance-regular graph with diameter D≥3, and assume the intersection numbers c 2>1, a 1≠0. Suppose Γ is Q-polynomial. Then the following (i)–(iii) are equivalent. (i)*Γcontains no parallelogram of length 2 or 3. (ii)*Γis D-bounded. (iii)*Γhas classical parameters (D,b,α,β), and either b<−1, or elseΓis a dual polar graph or a Hamming graph. Received: February 8, 1995 / Revised: November 8, 1996  相似文献   

3.
Let Γ denote a distance-regular graph with diameter d≥3. By a parallelogram of length 3, we mean a 4-tuple xyzw consisting of vertices of Γ such that (x,y)=(z,w)=1, (x,z)=3, and (x,w)=(y,w)=(y,z)=2, where denotes the path-length distance function. Assume that Γ has intersection numbers a 1=0 and a 2≠0. We prove that the following (i) and (ii) are equivalent. (i) Γ is Q-polynomial and contains no parallelograms of length 3; (ii) Γ has classical parameters (d,b,α,β) with b<−1. Furthermore, suppose that (i) and (ii) hold. We show that each of b(b+1)2(b+2)/c 2, (b−2)(b−1)b(b+1)/(2+2bc 2) is an integer and that c 2b(b+1). This upper bound for c 2 is optimal, since the Hermitian forms graph Her2(d) is a triangle-free distance-regular graph that satisfies c 2=b(b+1). Work partially supported by the National Science Council of Taiwan, R.O.C.  相似文献   

4.
Let Γ be a distance-regular graph of diameter d ≥ 3 with c 2 > 1. Let m be an integer with 1 ≤ m ≤ d − 1. We consider the following conditions:
  (SC) m : For any pair of vertices at distance m there exists a strongly closed subgraph of diameter m containing them.
  (BB) m : Let (x, y, z) be a triple of vertices with ∂Γ(x, y) = 1 and ∂Γ(x, z) = ∂Γ(y, z) = m. Then B(x, z) = B(y, z).
  (CA) m : Let (x, y, z) be a triple of vertices with and |C(z, x) ∩ C(z, y)| ≥ 2. Then C(x, z) ∪ A(x, z) = C(y, z) ∪ A(y, z).
In [12] we have shown that the condition (SC) m holds if and only if both of the conditions (BB) i and (CA) i hold for i = 1,...,m. In this paper we show that if a 1 = 0 < a 2 and the condition (BB) i holds for i = 1,...,m, then the condition (CA) i holds for i = 1,...,m. In particular, the condition (SC) m holds. Applying this result we prove that a distance-regular graph with classical parameters (d, b, α, β) such that c 2 > 1 and a 1 = 0 < a 2 satisfies the condition (SC) i for i = 1,...,d − 1. In particular, either (b, α, β) = (− 2, −3, −1 − (−2) d ) or holds.  相似文献   

5.
A new sufficient condition for Hamiltonian graphs   总被引:1,自引:0,他引:1  
The study of Hamiltonian graphs began with Dirac’s classic result in 1952. This was followed by that of Ore in 1960. In 1984 Fan generalized both these results with the following result: If G is a 2-connected graph of order n and max{d(u),d(v)}≥n/2 for each pair of vertices u and v with distance d(u,v)=2, then G is Hamiltonian. In 1991 Faudree–Gould–Jacobson–Lesnick proved that if G is a 2-connected graph and |N(u)∪N(v)|+δ(G)≥n for each pair of nonadjacent vertices u,vV(G), then G is Hamiltonian. This paper generalizes the above results when G is 3-connected. We show that if G is a 3-connected graph of order n and max{|N(x)∪N(y)|+d(u),|N(w)∪N(z)|+d(v)}≥n for every choice of vertices x,y,u,w,z,v such that d(x,y)=d(y,u)=d(w,z)=d(z,v)=d(u,v)=2 and where x,y and u are three distinct vertices and w,z and v are also three distinct vertices (and possibly |{x,y}∩{w,z}| is 1 or 2), then G is Hamiltonian.  相似文献   

6.
 Let G be a (V,E) graph of order p≥2. The double vertex graph U 2 (G) is the graph whose vertex set consists of all 2-subsets of V such that two distinct vertices {x,y} and {u,v} are adjacent if and only if |{x,y}∩{u,v}|=1 and if x=u, then y and v are adjacent in G. For this class of graphs we discuss the regularity, eulerian, hamiltonian, and bipartite properties of these graphs. A generalization of this concept is n-tuple vertex graphs, defined in a manner similar to double vertex graphs. We also review several recent results for n-tuple vertex graphs. Received: October, 2001 Final version received: September 20, 2002 Dedicated to Frank Harary on the occasion of his Eightieth Birthday and the Manila International Conference held in his honor  相似文献   

7.
We give an estimate for the spectrum of the averaging operator T1(Γ, 1) over the radius 1 for the finite (q+1)-homogeneous quotient graph Γ/X, where X is an infinite (q+1)-homogeneous tree associated with the free group G over a finite set of generators S={x1 ..., xp} (2p=q+1), and Γ, a subgroup of finite index in G. T1(Γ, 1) is defined on the subspace L2(Γ/G, 1) ⊖ Eex, where Eex is the subspace of eigenfunctions of T1(Γ, 1) with eigenvalue λ such that |λ|=q+1. We present a construction of some finite homogeneous graphs such that the spectrum of their adjacency matrices can be calculated explicitly. Bibliography: 11 titles. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 205, 1993, pp. 92–109. Translated by A. M. Nikitin.  相似文献   

8.
 Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove the following two results and conjecture that every 5-connected almost claw-free graph is hamiltonian. (1). Every 2-connected almost claw-free graph GJ on n≤ 4 δ vertices is hamiltonian, where J is the set of all graphs defined as follows: any graph G in J can be decomposed into three disjoint connected subgraphs G 1, G 2 and G 3 such that E G (G i , G j ) = {u i , u j , v i v j } for ij and i,j = 1, 2, 3 (where u i v i V(G i ) for i = 1, 2, 3). Moreover the bound 4δ is best possible, thereby fully generalizing several previous results. (2). Every 3-connected almost claw-free graph on at most 5δ−5 vertices is hamiltonian, hereby fully generalizing the corresponding result on claw-free graphs. Received: September 21, 1998 Final version received: August 18, 1999  相似文献   

9.
The geodesic interval function I of a connected graph allows an axiomatic characterization involving axioms on the function only, without any reference to distance, as was shown by Nebeský [20]. Surprisingly, Nebeský [23] showed that, if no further restrictions are imposed, the induced path function J of a connected graph G does not allow such an axiomatic characterization. Here J(u,v) consists of the set of vertices lying on the induced paths between u and v. This function is a special instance of a transit function. In this paper we address the question what kind of restrictions could be imposed to obtain axiomatic characterizations of J. The function J satisfies betweenness if wJ(u,v), with wu, implies uJ(w,v) and xJ(u,v) implies J(u,x)⊆J(u,v). It is monotone if x,yJ(u,v) implies J(x,y)⊆J(u,v). In the case where we restrict ourselves to functions J that satisfy betweenness, or monotonicity, we are able to provide such axiomatic characterizations of J by transit axioms only. The graphs involved can all be characterized by forbidden subgraphs.  相似文献   

10.
Consider the Cauchy problem ∂u(x, t)/∂t = ℋu(x, t) (x∈ℤd, t≥ 0) with initial condition u(x, 0) ≡ 1 and with ℋ the Anderson Hamiltonian ℋ = κΔ + ξ. Here Δ is the discrete Laplacian, κ∈ (0, ∞) is a diffusion constant, and ξ = {ξ(x): x∈ℤ d } is an i.i.d.random field taking values in ℝ. G?rtner and Molchanov (1990) have shown that if the law of ξ(0) is nondegenerate, then the solution u is asymptotically intermittent. In the present paper we study the structure of the intermittent peaks for the special case where the law of ξ(0) is (in the vicinity of) the double exponential Prob(ξ(0) > s) = exp[−e s ] (s∈ℝ). Here θ∈ (0, ∞) is a parameter that can be thought of as measuring the degree of disorder in the ξ-field. Our main result is that, for fixed x, y∈ℤ d and t→∈, the correlation coefficient of u(x, t) and u(y, t) converges to ∥w ρ−2 ℓ2Σz ∈ℤd w ρ(x+z)w ρ(y+z). In this expression, ρ = θ/κ while w ρ:ℤd→ℝ+ is given by w ρ = (v ρ) d with v ρ: ℤ→ℝ+ the unique centered ground state (i.e., the solution in ℓ2(ℤ) with minimal l 2-norm) of the 1-dimensional nonlinear equation Δv + 2ρv log v = 0. The uniqueness of the ground state is actually proved only for large ρ, but is conjectured to hold for any ρ∈ (0, ∞). empty It turns out that if the right tail of the law of ξ(0) is thicker (or thinner) than the double exponential, then the correlation coefficient of u(x, t) and u(y, t) converges to δ x, y (resp.the constant function 1). Thus, the double exponential family is the critical class exhibiting a nondegenerate correlation structure. Received: 5 March 1997 / Revised version: 21 September 1998  相似文献   

11.
We study the existence and the properties of reduced measures for the parabolic equations t u − Δu + g(u) = 0 in Ω × (0, ∞) subject to the conditions (P): u = 0 on Ω × (0, ∞), u(x, 0) = μ and (P′): u = μ′ on Ω × (0, ∞), u(x, 0) = 0, where μ and μ′ are positive Radon measures and g is a continuous nondecreasing function.  相似文献   

12.
If G is a connected graph with distance function d, then by a step in G is meant an ordered triple (u, x, v) of vertices of G such that d(u, x) = 1 and d(u, v) = d(x, v) + 1. A characterization of the set of all steps in a connected graph was published by the present author in 1997. In Section 1 of this paper, a new and shorter proof of that characterization is presented. A stronger result for a certain type of connected graphs is proved in Section 2.  相似文献   

13.
A Fan Type Condition For Heavy Cycles in Weighted Graphs   总被引:2,自引:0,他引:2  
 A weighted graph is a graph in which each edge e is assigned a non-negative number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its edges. The weighted degree d w (v) of a vertex v is the sum of the weights of the edges incident with v. In this paper, we prove the following result: Suppose G is a 2-connected weighted graph which satisfies the following conditions: 1. max{d w (x),d w (y)∣d(x,y)=2}≥c/2; 2. w(x z)=w(y z) for every vertex zN(x)∩N(y) with d(x,y)=2; 3. In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a Hamilton cycle or a cycle of weight at least c. This generalizes a theorem of Fan on the existence of long cycles in unweighted graphs to weighted graphs. We also show we cannot omit Condition 2 or 3 in the above result. Received: February 7, 2000 Final version received: June 5, 2001  相似文献   

14.
The induced path transit function J(u,v) in a graph consists of the set of all vertices lying on any induced path between the vertices u and v. A transit function J satisfies monotone axiom if x,yJ(u,v) implies J(x,y)⊆J(u,v). A transit function J is said to satisfy the Peano axiom if, for any u,v,w∈V,x∈J(v,w), yJ(u,x), there is a zJ(u,v) such that yJ(w,z). These two axioms are equivalent for the induced path transit function of a graph. Planar graphs for which the induced path transit function satisfies the monotone axiom are characterized by forbidden induced subgraphs.  相似文献   

15.
Cartesian products of complete graphs are known as Hamming graphs. Using embeddings into Cartesian products of quotient graphs we characterize subgraphs, induced subgraphs, and isometric subgraphs of Hamming graphs. For instance, a graph G is an induced subgraph of a Hamming graph if and only if there exists a labeling of E(G) fulfilling the following two conditions: (i) edges of a triangle receive the same label; (ii) for any vertices u and v at distance at least two, there exist two labels which both appear on any induced u, υ‐path. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 302–312, 2005  相似文献   

16.
We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ${u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2}We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ut = (un)xx + lf(u)/(ò-11 f(u)dx)2{u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2} with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),−f ′ (s) > 0 for s ≥ 0 and s n-1 f(s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter λ, say λ*, such that for λ > λ* the solution u = u(x, t; λ) blows up globally in finite time, while for λ ≥ λ* the corresponding steady-state problem does not have any solution. For 0 < λ < λ* there exists a unique steady-state solution w = w(x; λ) while u = u(x, t; λ) is global in time and converges to w as t → ∞. Here we show the global grow-up of critical solution u* =  u(x, t; λ*) (u* (x, t) → ∞, as t → ∞ for all x ? (-1,1){x\in(-1,1)}.  相似文献   

17.
Let Γ=(X,E) denote a bipartite distance-regular graph with diameter D≥4, and fix a vertex x of Γ. The Terwilliger algebra T=T(x) is the subalgebra of Mat X(C) generated by A, E * 0, E * 1,…,E * D, where A denotes the adjacency matrix for Γ and E * i denotes the projection onto the i TH subconstituent of Γ with respect to x. An irreducible T-module W is said to be thin whenever dimE * i W≤1 for 0≤iDi. The endpoint of W is min{i|E * i W≠0}. We determine the structure of the (unique) irreducible T-module of endpoint 0 in terms of the intersection numbers of Γ. We show that up to isomorphism there is a unique irreducible T-module of endpoint 1 and it is thin. We determine its structure in terms of the intersection numbers of Γ. We determine the structure of each thin irreducible T-module W of endpoint 2 in terms of the intersection numbers of Γ and an additional real parameter ψ=ψ(W), which we refer to as the type of W. We now assume each irreducible T-module of endpoint 2 is thin and obtain the following two-fold result. First, we show that the intersection numbers of Γ are determined by the diameter D of Γ and the set of ordered pairs
where Φ2 denotes the set of distinct types of irreducible T-modules with endpoint 2, and where mult(ψ) denotes the multiplicity with which the module of type ψ appears in the standard module. Secondly, we show that the set of ordered pairs {(ψ,mult(ψ)) |ψ∈Φ2} is determined by the intersection numbers k, b 2, b 3 of Γ and the spectrum of the graph , where
and where ∂ denotes the distance function in Γ. Combining the above two results, we conclude that if every irreducible T-module of endpoint 2 is thin, then the intersection numbers of Γ are determined by the diameter D of Γ, the intersection numbers k, b 2, b 3 of Γ, and the spectrum of Γ2 2. Received: November 13, 1995 / Revised: March 31, 1997  相似文献   

18.
An extension of a classical theorem of Rellich to the exterior of a closed proper convex cone is proved: Let Γ be a closed convex proper cone inR n and −Γ′ be the antipodes of the dual cone of Γ. Let be a partial differential operator with constant coefficients inR n, whereQ(ζ)≠0 onR niΓ′ andP i is an irreducible polynomial with real coefficients. Assume that the closure of each connected component of the set {ζ∈R niΓ′;P j(ζ)=0, gradP j(ζ)≠0} contains some real point on which gradP j≠0 and gradP j∉Γ∪(−Γ). LetC be an open cone inR n−Γ containing both normal directions at some such point, and intersecting each normal plane of every manifold contained in {ξ∈R n;P(ξ)=0}. Ifu∈ℒ′∩L loc 2 (R n−Γ) and the support ofP(−i∂/∂x)u is contained in Γ, then the condition implies that the support ofu is contained in Γ.  相似文献   

19.
Tight Distance-Regular Graphs and the Q-Polynomial Property   总被引:1,自引:0,他引:1  
 Let Γ denote a distance-regular graph with diameter d≥3, and assume Γ is tight (in the sense of Jurišić, Koolen and Terwilliger). Let θ denote the second largest or smallest eigenvalue of Γ, and let σ01,…,σ d denote the associated cosine sequence. We obtain an inequality involving σ01,…,σ d for each integer i (1≤id−1), and we show equality for all i is closely related to Γ being Q-polynomial with respect to θ. We use this idea to investigate the Q-polynomial structures in tight distance-regular graphs. Received: January 30, 1998 Final version received: August 14, 1998  相似文献   

20.
In an earlier paper a generalization of Rellich’s theorem on the Helmholz equation was obtained for a large class of higher order equationsP(1/i∂/∂x)u=f, subject to the condition that the Gaussian curvature ofP(ξ)=0 never vanish. This restriction is removed in this note.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号