首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
An even factor of a graph is a spanning subgraph of G in which all degrees are even, positive integers. In this paper, we characterize the claw-free graphs having even factors and then prove that the n-iterated line graph Ln(G) of G has an even factor if and only if every end branch of G has length at most n and every odd branch-bond of G has a branch of length at most n+1.  相似文献   

2.
INDEPENDENT-SET-DELETABLE FACTOR-CRITICAL POWER GRAPHS   总被引:3,自引:0,他引:3  
It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for every independent set 7 which has the same parity as |V(G)|, G-I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The k-th power of G, denoted by Gk, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G3 and T(G) (the total graph of G) are ID-factor-critical, and G4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D2 is ID-factor-critical.  相似文献   

3.
It is an old problem in graph theory to test whether a graph contains a chordless cycle of length greater than three (hole) with a specific parity (even, odd). Studying the structure of graphs without odd holes has obvious implications for Berge's strong perfect graph conjecture that states that a graph G is perfect if and only if neither G nor its complement contain an odd hole. Markossian, Gasparian, and Reed have proven that if neither G nor its complement contain an even hole, then G is β‐perfect. In this article, we extend the problem of testing whether G(V, E) contains a hole of a given parity to the case where each edge of G has a label odd or even. A subset of E is odd (resp. even) if it contains an odd (resp. even) number of odd edges. Graphs for which there exists a signing (i.e., a partition of E into odd and even edges) that makes every triangle odd and every hole even are called even‐signable. Graphs that can be signed so that every triangle is odd and every triangle is odd and every hole is odd are called odd‐signable. We derive from a theorem due to Truemper co‐NP characterizations of even‐signable and odd‐signable graphs. A graph is strongly even‐signable if it can be signed so that every cycle of length ≥ 4 with at most one chord is even and every triangle is odd. Clearly a strongly even‐signable graph is even‐signable as well. Graphs that can be signed so that cycles of length four with one chord are even and all other cycles with at most one chord are odd are called strongly odd‐signable. Every strongly odd‐signable graph is odd‐signable. We give co‐NP characterizations for both strongly even‐signable and strongly odd‐signable graphs. A cap is a hole together with a node, which is adjacent to exactly two adjacent nodes on the hole. We derive a decomposition theorem for graphs that contain no cap as induced subgraph (cap‐free graphs). Our theorem is analogous to the decomposition theorem of Burlet and Fonlupt for Meyniel graphs, a well‐studied subclass of cap‐free graphs. If a graph is strongly even‐signable or strongly odd‐signable, then it is cap‐free. In fact, strongly even‐signable graphs are those cap‐free graphs that are even‐signable. From our decomposition theorem, we derive decomposition results for strongly odd‐signable and strongly even‐signable graphs. These results lead to polynomial recognition algorithms for testing whether a graph belongs to one of these classes. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 289–308, 1999  相似文献   

4.
A pair of vertices of a graph is called an even pair if every chordless path between them has an even number of edges. A graph is minimally even pair free if it is not a clique, contains no even pair, but every proper induced subgraph either contains an even pair or is a clique. Hougardy (European J. Combin. 16 (1995) 17–21) conjectured that a minimally even pair free graph is either an odd cycle of length at least five, the complement of an even or odd cycle of length at least five, or the linegraph of a bipartite graph. A diamond is a graph obtained from a complete graph on four vertices by removing an edge. In this paper we verify Hougardy's conjecture for diamond-free graphs by adapting the characterization of perfect diamond-free graphs given by Fonlupt and Zemirline (Maghreb Math. Rev. 1 (1992) 167–202).  相似文献   

5.
By Petersen's theorem, a bridgeless cubic multigraph has a 2-factor. Fleischner generalised this result to bridgeless multigraphs of minimum degree at least three by showing that every such multigraph has a spanning even subgraph. Our main result is that every bridgeless simple graph with minimum degree at least three has a spanning even subgraph in which every component has at least four vertices. We deduce that if G is a simple bridgeless graph with n vertices and minimum degree at least three, then its line graph has a 2-factor with at most max{1,(3n-4)/10} components. This upper bound is best possible.  相似文献   

6.
The vertex-critical graph conjecture (critical graph conjecture respectively) states that every vertex-critical (critical) graph has an odd number of vertices. In this note we prove that if G is a critical graph of even order, then G has at least three vertices of less-than-maximum valency. In addition, if G is a 3-critical multigraph of smallest even order, then G is simple and has no triangles.  相似文献   

7.
It is proved that, if M is a binary matroid, then every cocircuit of M has even cardinality if and only if M can be obtained by contracting some other binary matroid M+ onto a single circuit. This is the natural analog of the Euler circuit theorem for graphs. It is also proved that every coloop-free matroid can be obtained by contracting some other matroid (not in general binary) onto a single circuit.  相似文献   

8.
一个κ-正则图若满足对任意正整数s,1≤s≤κ,均存在一个s-因子或一个2[s/2]因子,则称其有泛因子或偶泛因子性质.本文证明了每个奇度Cayley图是泛因子的,每个偶度Carley图是偶泛因子的.同时证明了二面体群上的每个Cayley图均是泛因子的.  相似文献   

9.
10.
In (Fund Math 60:175–186 1967), Wolk proved that every well partial order (wpo) has a maximal chain; that is a chain of maximal order type. (Note that all chains in a wpo are well-ordered.) We prove that such maximal chain cannot be found computably, not even hyperarithmetically: No hyperarithmetic set can compute maximal chains in all computable wpos. However, we prove that almost every set, in the sense of category, can compute maximal chains in all computable wpos. Wolk’s original result actually shows that every wpo has a strongly maximal chain, which we define below. We show that a set computes strongly maximal chains in all computable wpo if and only if it computes all hyperarithmetic sets.  相似文献   

11.
Let be the boundary of a convex domain symmetric to the origin. The conjecture that any continuous even function can be uniformly approximated by homogeneous polynomials of even degree on K is proven in the following cases: (a) if d = 2; (b) if K is twice continuously differentiable and has positive curvature in every point; or (c) if K is the boundary of a convex polytope.  相似文献   

12.
We show that under ZF + DC, even if every set of reals is measurable, not necessarily every set of reals has the Baire property. This was somewhat surprising, as for the Σ 2 1 set the implication holds. This research was partially supported by an NSF grant and the U.S.-Israel Binational Science Foundation.  相似文献   

13.
In a finite graph, an edge set Z is an element of the cycle space if and only if every vertex has even degree in Z. We extend this basic result to the topological cycle space, which allows infinite circuits, of locally finite graphs. In order to do so, it becomes necessary to attribute a parity to the ends of the graph.  相似文献   

14.
We say that G is almost claw-free if the vertices that are centers of induced claws (K1,3) in G are independent and their neighborhoods are 2-dominated. Clearly, every claw-free graph is almost claw-free. It is shown that (i) every even connected almost claw-free graph has a perfect matching and (ii) every nontrivial locally connected K1,4-free almost claw-free graph is fully cycle extendable.  相似文献   

15.
A family of sets has the equal union property if there exist two nonempty disjoint subfamilies having equal unions and has the full equal union property if, in addition, all sets are included. Both recognition problems are NP-complete even when restricted to families for which the cardinality of every set is at most three. Both problems can be solved in polynomial time when restricted to families having a bounded number of sets with cardinality greater than two. A corollary is that deciding if a graph has two disjoint edge covers is in P.  相似文献   

16.
We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel and Kühn [4, 5], which allows for infinite cycles, we prove that the edge set of a locally finite graph G lies in C(G) if and only if every vertex and every end has even degree. In the same way we generalise to locally finite graphs the characterisation of the cycles in a finite graph as its 2-regular connected subgraphs.  相似文献   

17.
A family of nonempty sets has the equal union property if there exist two nonempty disjoint subfamilies having equal unions. If every point belongs to the unions, then we say the family has the full equal union property. Recognition of both properties is NP-complete even when restricted to families for which the degree of every point is at most three. In this paper we show that both recognition problems can be solved in polynomial time for families in which there is a bound on the number of points whose degree exceeds two.  相似文献   

18.
Lixin Mao 《代数通讯》2013,41(5):1505-1516
In this article, we investigate when every simple module has a projective (pre)envelope. It is proven that (1) every simple right R-module has a projective preenvelope if and only if the left annihilator of every maximal right ideal of R is finitely generated; (2) every simple right R-module has an epic projective envelope if and only if R is a right PS ring; (3) Every simple right R-module has a monic projective preenvelope if and only if R is a right Kasch ring and the left annihilator of every maximal right ideal of R is finitely generated.  相似文献   

19.
Let (G, w) denote a simple graph G with a weight function w : E(G) ← {0, 1, 2}. A path cover of (G, w) is a collection of paths in G such that every edge e is contained in exactly w(e) paths of the collection. For a vertex v, w(v) is the sum of the weights of the edges incident with v; v is called an odd (even) vertex if w(v) is odd (even). We prove that if every vertex of (G, w) is incident with at most one edge of weight 2, then (G, w) has a path cover P such that each odd vertex occurs exactly once, and each even vertex exactly twice, as an end of a path of P. We also prove that if every vertex of (G, w) is even, then (G, w) has a path cover P such that each vertex occurs exactly twice as an end of a path of P. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
In a topological Riesz space there are two types of bounded subsets: order bounded subsets and topologically bounded subsets. It is natural to ask (1) whether an order bounded subset is topologically bounded and (2) whether a topologically bounded subset is order bounded. A classical result gives a partial answer to (1) by saying that an order bounded subset of a locally solid Riesz space is topologically bounded. This paper attempts to further investigate these two questions. In particular, we show that (i) there exists a non-locally solid topological Riesz space in which every order bounded subset is topologically bounded; (ii) if a topological Riesz space is not locally solid, an order bounded subset need not be topologically bounded; (iii) a topologically bounded subset need not be order bounded even in a locally convex-solid Riesz space. Next, we show that (iv) if a locally solid Riesz space has an order bounded topological neighborhood of zero, then every topologically bounded subset is order bounded; (v) however, a locally convex-solid Riesz space may not possess an order bounded topological neighborhood of zero even if every topologically bounded subset is order bounded; (vi) a pseudometrizable locally solid Riesz space need not have an order bounded topological neighborhood of zero. In addition, we give some results about the relationship between order bounded subsets and positive homogeneous operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号