首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
T. Ranz  A. Lion 《PAMM》2007,7(1):4060057-4060058
Like many other materials used in mechanical and civil engineering, wood shows a pronounced history-dependent mechanical material behaviour. Due to its anisotropy its rheological behaviour is strongly dependent on the direction. In this research project, the material behaviour is represented with a phenomenological theory of anisotropic fractional viscoelasticity. In order to identify the material functions and parameters, the time-dependent creep compliances are measured in three orthogonal directions under tension and shear. As a result of the developed constitutive approach, the experimentally observed creep data is described by several power functions. In the second part of the presentation, some differences between classical models of viscoelasticity which are based on Kelvin-Voigt or Maxwell elements and the fractional approach are presented. The assets and drawbacks with respect to wood are discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Materials used for adhesive tapes indicate viscohyperelastic behaviour. We presented a model approach for extending hyperelastic material models for viscous effects via an evolution law approach. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Fractional-order differential equations are interesting for their applications in the construction of mathematical models in finance, materials science or diffusion. In this paper, an application of a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equation is employed for calculating Lyapunov exponents of fractional order systems. It is known that the Lyapunov exponents, first introduced by Oseledec, play a crucial role in characterizing the behaviour of dynamical systems. They can be used to analyze the sensitive dependence on initial conditions and the presence of chaotic attractors. The results reveal that the proposed method is very effective and simple and leads to accurate, approximately convergent solutions.  相似文献   

4.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

5.
In this paper fractional Hindmarsh Rose (HR) neuron, which mimics several behaviors of a real biological neuron is implemented on field programmable gate array (FPGA). The results show several differences in the dynamic characteristics of integer and fractional order Hindmarsh Rose neuron models. The integer order model shows only one type of firing characteristics when the parameters of model remains same. The fractional order model depicts several dynamical behaviors even for the same parameters as the order of the fractional operator is varied. The firing frequency increases when the order of the fractional operator decreases. The fractional order is therefore key in determining the firing characteristics of biological neurons. To implement this neuron model first the digital realization of different fractional operator approximations are obtained, then the fractional integrator is used to obtain the low power and low cost hardware realization of fractional HR neuron. The fractional neuron model has been implemented on a low voltage and low power circuit and then compared with its integer counter part. The hardware is used to demonstrate the different dynamical behaviors of fractional HR neuron for different type of approximations obtained for fractional operator in this paper. A coupled network of fractional order HR neurons is also implemented. The results also show that synchronization between neurons increases as long as coupling factor keeps on increasing.  相似文献   

6.
Purpose In this article, a novel computational method is introduced for solving the fractional nonlinear oscillator differential equations on the semi‐infinite domain. The purpose of the proposed method is to get better and more accurate results. Design/methodology/approach The proposed method is the combination of the sine‐cosine wavelets and Picard technique. The operational matrices of fractional‐order integration for sine‐cosine wavelets are derived and constructed. Picard technique is used to convert the fractional nonlinear oscillator equations into a sequence of discrete fractional linear differential equations. Operational matrices of sine‐cosine wavelets are utilized to transformed the obtained sequence of discrete equations into the systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear oscillator equations. Findings The convergence and supporting analysis of the method are investigated. The operational matrices contains many zero entries, which lead to the high efficiency of the method, and reasonable accuracy is achieved even with less number of collocation points. Our results are in good agreement with exact solutions and more accurate as compared with homotopy perturbation method, variational iteration method, and Adomian decomposition method. Originality/value Many engineers can utilize the presented method for solving their nonlinear fractional models.  相似文献   

7.
Here the broad study is depending on random integro-differential equations (RIDE) of arbitrary order. The fractional order is in terms of $\psi$-Hilfer fractional operator. This work reveals the dynamical behaviour such as existence, uniqueness and stability solutions for RIDE involving fractional order. Thus initial value problem (IVP), boundary value problem (BVP), impulsive effect and nonlocal conditions are taken in account to prove the results.  相似文献   

8.
Viscoelastic properties of soft biological tissues provide information that may be useful in medical diagnosis. Noninvasive elasticity imaging techniques, such as Magnetic Resonance Elastography (MRE), reconstruct viscoelastic material properties from dynamic displacement images. The reconstruction algorithms employed in these techniques assume a certain viscoelastic material model and the results are sensitive to the model chosen. Developing a better model for the viscoelasticity of soft tissue-like materials could improve the diagnostic capability of MRE. The well known “integer derivative” viscoelastic models of Voigt and Kelvin, and variations of them, cannot represent the more complicated rate dependency of material behavior of biological tissues over a broad spectral range. Recently the “fractional derivative” models have been investigated by a number of researchers. Fractional order models approximate the viscoelastic material behavior of materials through the corresponding fractional differential equations. This paper focuses on the tissue mimicking materials CF-11 and gelatin, and compares fractional and integer order models to describe their behavior under harmonic mechanical loading. Specifically, Rayleigh (surface) waves on CF-11 and gelatin phantoms are studied, experimentally and theoretically, in order to develop an independent test bed for assessing viscoelastic material models that will ultimately be used in MRE reconstruction algorithms.  相似文献   

9.
Fractional order accumulation is a novel and popular tool which is efficient to improve accuracy of the grey models. However, most existing grey models with fractional order accumulation are all developed on the conventional methodology of grey models, which may be inaccurate in the applications. In this paper an existing fractional multivariate grey model with convolution integral is proved to be a biased model, and then a novel fractional discrete multivariate grey model based on discrete modelling technique is proposed, which is proved to be an unbiased model with mathematical analysis and stochastic testing. An algorithm based on the Grey Wolf Optimizer is introduced to optimize the fractional order of the proposed model. Four real world case studies with updated data sets are executed to assess the effectiveness of the proposed model in comparison with nine existing multivariate grey models. The results show that the Grey Wolf Optimizer-based algorithm is very efficient to optimize the fractional order of the proposed model, and the proposed model outperforms other nine models in the all the real world case studies.  相似文献   

10.
A new model of fractional telegraph point reactor kinetics FTPRK is introduced to approximate the time dependent Boltzmann transport equation considering new terms that contain time derivative of the reactivity and fractional integral of the neutron density. Caputo fractional derivatives and fractional Leibniz rule are used for such derivation. Cattaneoequation is applied to overcome the flaw of infinite neutron velocity and to describe the anomalous transport. Effect of the new term on the neutron behaviour is discussed. The new model is applied to both TRIGA reactor and to commercial pressured water reactor of a Three Mile Island type reactor, TMI-type PWR. Results for step, ramp and sinusoidal excess reactivities with thermal hydraulic feedback are presented and discussed for different values of anomalous sub-diffusion exponent, the fractional order, 0 < µ ≤ 1. To maintain the reactor safe at start-up after insertion of step reactivity and based on the concept of prompt jump approximation, the FTPRK model is simplified and solved analytically by Mittag–Liffler function. Physical interpretations of the fractional order µ and relaxation time τ and their effects on the behaviour of the neutron population are discussed. Also, the effect of a small perturbation in the geometric buckling on the neutron behaviour is discussed for finite reactor core. The new model is solved numerically using the fractional order multi-step differential transform method MDTM. The MDTM constitutes an easy algorithm based on Taylor's formula and Caputo fractional derivative. Two theorems with their proofs are introduced to solve the fractional system. Two major disadvantages of the method about the choice of the fractional order values and the step size length are addressed. We present a procedure which enables us to solve the system with appropriate values of fraction orders.  相似文献   

11.
In this study, the non-Darcian flow and solute transport in porous media are modeled with a revised Caputo derivative called the Caputo–Fabrizio fractional derivative. The fractional Swartzendruber model is proposed for the non-Darcian flow in porous media. Furthermore, the normal diffusion equation is converted into a fractional diffusion equation in order to describe the diffusive transport in porous media. The proposed Caputo–Fabrizio fractional derivative models are addressed analytically by applying the Laplace transform method. Sensitivity analyses were performed for the proposed models according to the fractional derivative order. The fractional Swartzendruber model was validated based on experimental data for water flows in soil–rock mixtures. In addition , the fractional diffusion model was illustrated by fitting experimental data obtained for fluid flows and chloride transport in porous media. Both of the proposed fractional derivative models were highly consistent with the experimental results.  相似文献   

12.
This paper focuses on a significant issue in the research of fractional order complex network, i.e., the identification problem of unknown system parameters and network topologies in uncertain complex networks with fractional-order node dynamics. Based on the stability analysis of fractional order systems and the adaptive control method, we propose a novel and general approach to address this challenge. The theoretical results in this paper have generalized the synchronization-based identification method that has been reported in several literatures on identifying integer order complex networks. We further derive the sufficient condition that ensures successful network identification. An uncertain complex network with four fractional-order Lorenz systems is employed to verify the effectiveness of the proposed approach. The numerical results show that this approach is applicable for online monitoring of the static or changing network topology. In addition, we present a discussion to explore which factor would influence the identification process. Certain interesting conclusions from the discussion are obtained, which reveal that large coupling strengths and small fractional orders are both harmful for a successful identification.  相似文献   

13.
The stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise is considered. Firstly, the generalized harmonic function technique is applied to the fractional self-excited systems. Based on this approach, the original fractional self-excited systems are reduced to equivalent stochastic systems without fractional derivative. Then, the analytical solutions of the equivalent stochastic systems are obtained by using the stochastic averaging method. Finally, in order to verify the theoretical results, the two most typical self-excited systems with fractional derivative, namely the fractional van der Pol oscillator and fractional Rayleigh oscillator, are discussed in detail. Comparing the analytical and numerical results, a very satisfactory agreement can be found. Meanwhile, the effects of the fractional order, the fractional coefficient, and the intensity of Gaussian white noise on the self-excited fractional systems are also discussed in detail.  相似文献   

14.
Traditional integer‐order partial differential equation based image denoising approach can easily lead edge and complex texture detail blur, thus its denoising effect for texture image is always not well. To solve the problem, we propose to implement a fractional partial differential equation (FPDE) based denoising model for texture image by applying a novel mathematical method—fractional calculus to image processing from the view of system evolution. Previous studies show that fractional calculus has some unique properties that it can nonlinearly enhance complex texture detail in digital image processing, which is obvious different with integer‐order differential calculus. The goal of the modeling is to overcome the problems of the existed denoising approaches by utilizing the aforementioned properties of fractional differential calculus. Using classic definition and property of fractional differential calculus, we extend integer‐order steepest descent approach to fractional field to implement fractional steepest descent approach. Then, based on the earlier fractional formulas, a FPDE based multiscale denoising model for texture image is proposed and further analyze optimal parameters value for FPDE based denoising model. The experimental results prove that the ability for preserving high‐frequency edge and complex texture information of the proposed fractional denoising model are obviously superior to traditional integral based algorithms, as for texture detail rich images. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this paper is to propose diagnosis methods based on fractional order models and to validate their efficiency to detect faults occurring in thermal systems. Indeed, it is first shown that fractional operator allows to derive in a straightforward way fractional models for thermal phenomena. In order to apply classical diagnosis methods, such models could be approximated by integer order models, but at the expense of much higher involved parameters and reduced precision. Thus, two diagnosis methods initially developed for integer order models are here extended to handle fractional order models. The first one is the generalized dynamic parity space method and the second one is the Luenberger diagnosis observer. Proposed methods are then applied to a single-input multi-output thermal testing bench and demonstrate the methods efficiency for detecting faults affecting thermal systems.  相似文献   

16.
This work suggests a new analytical technique called the fractional homotopy perturbation method (FHPM) for solving fractional differential equations of any fractional order. This method is based on He’s homotopy perturbation method and the modified Riemann–Liouville derivative. The fractional differential equations are described in Jumarie’s sense. The results from introducing a modified Riemann–Liouville derivative in the cases studied show the high accuracy, simplicity and efficiency of the approach.  相似文献   

17.
Nature often presents complex dynamics, which cannot be explained by means of ordinary models. In this paper, we establish an approach to certain fractional dynamic systems using only deterministic arguments. The behavior of the trajectories of fractional non-linear autonomous systems around the corresponding critical points in the phase space is studied. In this work we arrive to several interesting conclusions; for example, we conclude that the order of fractional derivation is an excellent controller of the velocity how the mentioned trajectories approach to (or away from) the critical point. Such property could contribute to faithfully represent the anomalous reality of the competition among some species (in cellular populations as Cancer or HIV). We use classical models, which describe dynamics of certain populations in competition, to give a justification of the possible interest of the corresponding fractional models in biological areas of research.  相似文献   

18.
A note on phase synchronization in coupled chaotic fractional order systems   总被引:1,自引:0,他引:1  
The dynamic behaviors of fractional order systems have received increasing attention in recent years. This paper addresses the reliable phase synchronization problem between two coupled chaotic fractional order systems. An active nonlinear feedback control scheme is constructed to achieve phase synchronization between two coupled chaotic fractional order systems. We investigated the necessary conditions for fractional order Lorenz, Lü and Rössler systems to exhibit chaotic attractor similar to their integer order counterpart. Then, based on the stability results of fractional order systems, sufficient conditions for phase synchronization of the fractional models of Lorenz, Lü and Rössler systems are derived. The synchronization scheme that is simple and global enables synchronization of fractional order chaotic systems to be achieved without the computation of the conditional Lyapunov exponents. Numerical simulations are performed to assess the performance of the presented analysis.  相似文献   

19.
A new mathematical model of two-temperature magneto-thermoelasticity is constructed where the fractional order heat conduction law is considered. The state space approach is adopted for the solution of one-dimensional application for a perfect conducting half-space of elastic material with heat sources distribution in the presence of a transverse magnetic field. The Laplace-transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. According to the numerical results and its graphs, conclusions about the new theory are given. Some comparisons are shown in figures to estimate the effects of the temperature discrepancy and the fractional order parameter on all the studied fields.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号