首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Analytical solutions for bending, buckling, and vibration analyses of thick rectangular plates with various boundary conditions are presented using two variable refined plate theory. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using shear correction factor. In addition, it contains only two unknowns and has strong similarities with the classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. Equations of motion are derived from Hamilton’s principle. Closed-form solutions of deflection, buckling load, and natural frequency are obtained for rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions. Comparison studies are presented to verify the validity of present solutions. It is found that the deflection, stress, buckling load, and natural frequency obtained by the present theory match well with those obtained by the first-order and third-order shear deformation theories.  相似文献   

2.
In this paper a novel numerical method based on the Moving Kriging (MK) interpolation meshfree method, integrated with a simple higher-order shear deformation plate theory for analysis of static bending, free vibration and buckling of functionally graded (FG) plates is presented. In the proposed technique, the shape functions are built by the Kriging technique which possesses the property of Kronecker delta function which makes it easy to enforce essential boundary conditions. The present formulation is based on a refined simple third-order shear deformation theory (R-STSDT), which is based on four variables and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the plate present in the original simple third-order shear deformation theory (STSDT). In this theory, instead of assuming a specific distribution for the displacement field, the theory of elasticity is used for obtaining the kinematics of the plate deformation. We first propose the formulation, and then several numerical examples are provided to show the merits of the proposed approach.  相似文献   

3.
In this study, the static response is presented for a simply supported functionally graded rectangular plate subjected to a transverse uniform load. The generalized shear deformation theory obtained by the author in other recent papers is used. This theory is simplified by enforcing traction-free boundary conditions at the plate faces. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The equilibrium equations of a functionally graded plate are given based on a generalized shear deformation plate theory. The numerical illustrations concern bending response of functionally graded rectangular plates with two constituent materials. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, and volume fraction distributions are studied. The results are verified with the known results in the literature.  相似文献   

4.
In this article, an analytical approach for buckling analysis of thick functionally graded rectangular plates is presented. The equilibrium and stability equations are derived according to the higher-order shear deformation plate theory. Introducing an analytical method, the coupled governing stability equations of functionally graded plate are converted into two uncoupled partial differential equations in terms of transverse displacement and a new function, called boundary layer function. Using Levy-type solution these equations are solved for the functionally graded rectangular plate with two opposite edges simply supported under different types of loading conditions. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. Furthermore, the effects of power of functionally graded material, plate thickness, aspect ratio, loading types and boundary conditions on the critical buckling load of the functionally graded rectangular plate are studied and discussed in details. The critical buckling loads of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be used as benchmark.  相似文献   

5.
In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.  相似文献   

6.
The static response of simply supported functionally graded plates (FGP) subjected to a transverse uniform load (UL) or a sinusoidally distributed load (SL) and resting on an elastic foundation is examined by using a new hyperbolic displacement model. The present theory exactly satisfies the stress boundary conditions on the top and bottom surfaces of the plate. No transverse shear correction factors are needed, because a correct representation of the transverse shear strain is given. The material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. The foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second parameter is zero. The equilibrium equations of a functionally graded plate are given based on the hyperbolic shear deformation theory of plates presented. The effects of stiffness and gradient index of the foundation on the mechanical responses of the plates are discussed. It is established that the elastic foundations significantly affect the mechanical behavior of thick functionally graded plates. The numerical results presented in the paper can serve as benchmarks for future analyses of thick functionally graded plates on elastic foundations.  相似文献   

7.
In the present paper, a non-classical model for functionally graded annular sector microplates under distributed transverse loading is developed based on the modified couple stress theory and the first-order shear deformation plate theory. The model contains a single material length scale parameter which can capture the size effect. The material properties are graded through the thickness of plates according to a power-law distribution of the volume fraction of the constituents. The equilibrium equations and boundary conditions are simultaneously derived from the principle of minimum total potential energy. The system of equilibrium equations is then solved using the generalized differential quadrature method. The effects of length scale parameter, power-law index and geometrical parameters on the bending response of annular sector plates subjected to distributed transverse loading are investigated.  相似文献   

8.
应用4变量精确平板理论分析FG复合板的自由振动   总被引:1,自引:0,他引:1  
应用4变量的精确平板理论,对矩形功能梯度材料(FGM)复合板进行自由振动分析.与其它的理论不同,该理论的未知函数数量只有4个,而别的剪变形理论的未知函数为5个.提出的4变量精确平板理论,协调条件有了改变,与经典的薄板理论相比,许多方面有着惊人的相似,无需引入剪切修正因数——当横向剪应力越过板厚后,为了满足剪应力自由表面条件,出现抛物线状的改变,导致横向剪应力的变化.考虑了两种常见类型的FGM复合板,即,FGM表面层和各向同性夹芯层的复合板,以及各向同性表面层和FGM夹芯层的复合板.通过Hamilton原理,得到了FGM复合板的运动方程.得到闭式的Navier解,然后求解特征值问题,得到自由振动的基本频率.将该理论得到的结果,与经典理论,一阶的及其它更高阶的理论所得到的结果进行比较,检验了该理论的有效性.研究发现,该理论在求解FGM复合板自由振动性能方面,既精确又简单.  相似文献   

9.
This paper presents a two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates. In recent studies, a simple first-order shear deformation theory (S-FSDT) was developed and extended. It has only two variables by separating the deflection into bending and shear parts while the conventional first-order shear deformation theory (FSDT) has three variables. However, the S-FSDT provides incorrect predictions for the transverse shear forces on the insides and the twisting moments at the boundaries except simply supported plates since it does not consider in-plane rotation. The present theory also has two variables but considers in-plane rotation such that it is able to correctly predict the responses of plates with any boundary conditions. Analytical solutions are obtained for rectangular plates with two opposite edges that are simply supported, with the other edges having arbitrary boundary conditions. Numerical results of deflections, stress resultants, buckling loads and natural frequencies are presented with the FSDT, the S-FSDT and the present theory. Comparative studies demonstrate the effects of in-plane rotation and the accuracy of the present theory in predicting the bending, buckling and free vibration responses of isotropic plates.  相似文献   

10.
The main objective of this research work is to present analytical solutions for free vibration analysis of moderately thick rectangular plates, which are composed of functionally graded materials (FGMs) and supported by either Winkler or Pasternak elastic foundations. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. In order to capture fundamental frequencies of the functionally graded (FG) rectangular plates resting on elastic foundation, the analysis procedure is based on the first-order shear deformation plate theory (FSDT) to derive and solve exactly the equations of motion. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. First, a new formula for the shear correction factors, used in the Mindlin plate theory, is obtained for FG plates. Then the excellent accuracy of the present analytical solutions is confirmed by making some comparisons of the results with those available in literature. The effect of foundation stiffness parameters on the free vibration of the FG plates, constrained by different combinations of classical boundary conditions, is also presented for various values of aspect ratios, gradient indices, and thickness to length ratios.  相似文献   

11.
The free vibration of laminated composite plates on elastic foundations is examined by using a refined hyperbolic shear deformation theory. This theory is based on the assumption that the transverse displacements consist of bending and shear components where the bending components do not contribute to shear forces, and likewise, the shear components do not contribute to bending moments. The most interesting feature of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In the analysis, the foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second foundation parameter is zero. The equation of motion for simply supported thick laminated rectangular plates resting on an elastic foundation is obtained through the use of Hamilton’s principle. The numerical results found in the present analysis for free the vibration of cross-ply laminated plates on elastic foundations are presented and compared with those available in the literature. The theory proposed is not only accurate, but also efficient in predicting the natural frequencies of laminated composite plates.  相似文献   

12.
Mechanics of Composite Materials - A new refined quasi-3D shear deformation theory for bending, buckling, and free vibration analyses of a functionally graded porous beam resting on an elastic...  相似文献   

13.
基于偶应力理论,建立了适用于微纳米结构的Mindlin板理论。考虑横向剪切变形和材料的尺度效应并引入长度尺寸参数,推导了各向同性微纳米Mindlin板的本构方程。根据板的平衡条件,进一步推导出用位移函数和转角函数表示的板的屈曲和振动控制方程。通过对位移和转角变量进行空间和时间域上的分离,得出了四边简支(SSSS)和对边简支、对边固支(SCSC)两种边界情况下微纳米板的屈曲和振动问题的解析解。然后利用MATLAB软件进行算例分析,获得了不同尺寸参数、长宽比、厚长比等情况下板的临界屈曲荷载和固有频率。研究结果与已有文献中的结果以及ABAQUS有限元仿真解进行对比,结果表明,不同参数下的三种方法得到的结果均十分接近。算例分析发现,尺度效应对屈曲载荷和固有频率都有显著影响。  相似文献   

14.
In recent years many articles concerned with the mechanics of functionally graded plates have been published. The variation in material properties through the thickness of the plate introduces a coupling between in-plane and transverse displacements, the coupling is important in the vibration of functionally graded plates (FGPs), but none have produced an exact closed-form solution for the in-plane as well as transverse vibrations of smart circular/annular FGPs. Therefore, this paper develops an exact closed-form solution for the free vibration of piezoelectric coupled thick circular/annular FGPs subjected to different boundary conditions on the basis of the Mindlin’s first-order shear deformation theory. Through the comparison of present results with those available, the accuracy of the present method was verified. The effects of coupling between in-plane and transverse displacements on the frequency parameters are proved to be significant. It is concluded that the developed model can describe vibrational behavior of smart FGM plates more realistic. Due to the inherent features of the present solution, all findings will be a useful benchmark for evaluating other analytical and numerical methods developed by researchers in the future.  相似文献   

15.
Based on the first order shear deformation theory, free vibration behavior of functionally graded (FG) annular sector plates integrated with piezoelectric layers is investigated. The distribution of electric potential along the thickness direction of piezoelectric layers which is assumed to be a combination of linear and sinusoidal functions, satisfies both open and closed circuit electrical boundary conditions. Through a reformulation of governing equations and harmonic motion assumption, a novel decoupling method is suggested to transform the six second order coupled partial differential equations of motion into two eighth order and fourth order equations. A Fourier series method is then employed to present analytical solutions for free vibration of smart FG annular sector plates with simply supported radial edges and arbitrarily supported circular edges. The results, which can be used as a benchmark and suitable for design purposes, are verified with those reported in the literature. Finally, by presenting extensive ranges of frequencies, the effects of geometric parameters, power law index, FG and piezoelectric materials, electrical and mechanical boundary conditions as well as the piezoelectric layer thickness on vibration response of smart annular sector plates are discussed in detail.  相似文献   

16.
Nonlinear bending analysis is first presented for functionally graded elliptical plates resting on two-parameter elastic foundations, and investigations on FGM elliptical plates with immovable simply supported edge are also new in literature. Material properties are assumed to be temperature-dependent and graded in the thickness direction. The governing equations of a functionally graded plate are based on Reddy’s high-order shear deformation plate theory that includes thermal effects. Ritz method is employed to determine the central deflection-load and bending moment-load curves, the validity can be confirmed by comparison with related researchers’ results, and it is worth noting that the forms of approximate solutions are well-chosen in consideration of both simplicity and accuracy. Influences played by different supported boundaries, thermal environmental conditions, foundation stiffness, ratio of major to minor axis and volume fraction index are discussed in detail.  相似文献   

17.
The present study examines the nonlinear stability and free vibration features of multilayer functionally graded graphene platelet-reinforced polymer composite (FG-GPLRPC) rectangular plates under compressive in-plane mechanical loads in pre/post buckling regimes. The GPL weight fractions layer-wisely vary across the lateral direction. Furthermore, GPLs are uniformly dispersed in the polymer matrix of each layer. The effective Young's modulus of GPL-reinforced nanocomposite is assessed via the modified Halpin–Tsai technique, while the effective mass density and Poisson's ratio are attained by the rule of mixture. Taking the von Kármán-type nonlinearity into account for the large deflection of the FG-GPLRPC plate, as well as utilizing the variational differential quadrature (VDQ) method and Lagrange equation, the system of discretized coupled nonlinear equations of motions is directly achieved based upon a parabolic shear deformation plate theory; taking into account the impacts of geometric nonlinearity, in-plane loading, rotary inertia and transverse shear deformation. Afterwards, first, by neglecting the inertia terms, the pseudo-arc length approach is used in order to plot the equilibrium postbuckling path of FG-GPLRPC plates. Then, supposing a time-dependent disturbance about the postbuckling equilibrium status, the frequency responses of pre/post-buckled FG-GPLRC plate are obtained in terms of the compressive in-plane load. The influences of various vital design parameters are discussed through various parametric studies.  相似文献   

18.
In the present study, a novel exact closed-form procedure based on the third order shear deformation plate theory is developed to analyze in-plane and out-of-plane frequency responses of circular/annular functionally graded material (FGM) plates embedded in piezoelectric layers for both close/open circuit electrical boundary conditions. Introducing a new analytical method, five governing partial deferential equations of motion beside Maxwell electrostatic equation are solved via an exact closed-form method. The high accuracy and reliability of the present approach is confirmed by comparing some of the present data with their counterparts reported in the literature. Finally, the effect of material properties, power law index and boundary conditions on the free vibration of the smart FGM plate are studied and discussed in detail.  相似文献   

19.
This work addresses a static analysis of functionally graded material (FGM) plates using higher order shear deformation theory. In the theory the transverse shear stresses are represented as quadratic through the thickness and hence it requires no shear correction factor. The material property gradient is assumed to vary in the thickness direction. Mori and Tanaka theory (1973) [1] is used to represent the material property of FGM plate at any point. The thermal gradient across the plate thickness is represented accurately by utilizing the thermal properties of the constituent materials. Results have been obtained by employing a C° continuous isoparametric Lagrangian finite element with seven degrees of freedom for each node. The convergence and comparison studies are presented and effects of the different material composition and the plate geometry (side-thickness, side–side) on deflection and temperature are investigated. Effect of skew angle on deflection and axial stress of the plate is also studied. Effects of material constant n on deflection and the temperature distribution are also discussed in detail.  相似文献   

20.
In this paper, the vibration and buckling analyses of the FGM (functionally graded material) plates with multiple internal cracks and cutouts under thermal and mechanical loads are numerically investigated using the combined XIGA-PHT (extended isogeometric analysis based on PHT-splines) and FCM (finite cell method). Material properties are graded only in the thickness direction. The effective material properties are estimated by using either the rule of mixture or the Mori-Tanaka homogenization technique. The plate displacement field is based on the HSDT (higher-order shear deformation plate theory) without any requirement of the SCF (shear correction factor). The HSDT model can exactly represent the shear stress distribution and improve the accuracy of solutions. The PHT-splines can naturally fulfill the C1-continuous requirement of the HSDT model. The representation of internal defects is mesh-independent. The discontinuous and singular phenomena induced by the cracks are captured using the enrichment pattern in the XIGA, and the influence of cutouts is implemented by the FCM. The geometries of cutouts are captured by means of adaptive quadrature procedure based on a simple unfitted structural mesh, which avoids the need for multiple patches to describe the complex geometry and eliminates the enforcement of C1-continuity patch-coupling across the patch boundaries. The initial mesh density around the cracks and cutouts can be controlled flexibly utilizing the local refinement property of the PHT-splines. After validating the results of the developed approach with those available in the literature, the effects of material gradient index, side to thickness ratio, boundary conditions, cutout size and crack length on the normalized frequency and the critical buckling parameter are investigated. Numerical results illustrate the effectiveness and accuracy of the present approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号