首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A mixed boundary value problem for the Stokes system in a polyhedral domain is considered. Here different boundary conditions (in particular, Dirichlet, Neumann, free surface conditions) are prescribed on the faces of the polyhedron. The authors prove the existence of solutions in (weighted and non‐weighted) Lp Sobolev spaces and obtain regularity assertions for weak solutions. The results are based on point estimates of Green's matrix. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In connection with the free boundary value problem of determining the earth's surface from measurements of gravitational potential and force-field (“the geodetic boundary problem”), an oblique derivative problem arises, where D0 is some bounded domain, star shaped with respect to the origin. In order to prove a uniquencess theorem for the geodetic boundary problem, it is essential to give estimates for (weighted) L2-norms of the second derivatives of the solutions so that their bounds can be estimated numerically if bounds for the function describing the boundary are known. In this paper a Fredholm inverse for the above problem is constructed and the second derivatives of the solutions are estimated in the desired form.  相似文献   

3.
The paper deals with a mixed boundary value problem for the Stokes system in a polyhedral cone. Here different boundary conditions (in particular, Dirichlet, Neumann, free surface conditions) are prescribed on the sides of the polyhedron. The authors obtain regularity results for weak solutions in weighted L 2 Sobolev spaces and prove point estimates of Green's matrix. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this paper we develop a geometric theory for quasilinear parabolic problems in weighted L p -spaces. We prove existence and uniqueness of solutions as well as the continuous dependence on the initial data. Moreover, we make use of a regularization effect for quasilinear parabolic equations to study the ω-limit sets and the long-time behaviour of the solutions. These techniques are applied to a free boundary value problem. The results in this paper are mainly based on maximal regularity tools in (weighted) L p -spaces.  相似文献   

5.
We study the initial boundary value problem resulting from the linearization of the equations of ideal incompressible magnetohydrodynamics and the jump conditions on the hypersurface of tangential discontinuity (current–vortex sheet) about an unsteady piecewise smooth solution. Under some assumptions on the unperturbed flow, we prove an energy a priori estimate for the linearized problem. Since the so‐called loss of derivatives in the normal direction to the boundary takes place even for the constant coefficients linearized problem, for the variable coefficients problem and non‐planar current–vortex sheets the natural functional setting is provided by the anisotropic weighted Sobolev space W21,σ. The result of this paper is a necessary step to prove the local in time existence of solutions of the original non‐linear free boundary value problem. The uniqueness of the regular solution of this problem follows already from the a priori estimate we obtain for the linearized problem. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we will study the lower bounds of the life span (the maximal existence time) of solutions to the initial‐boundary value problems with small initial data and zero Neumann boundary data on exterior domain for one‐dimensional general quasilinear wave equations utt?uxx=b(u,Du)uxx+F(u,Du). Our lower bounds of the life span of solutions in the general case and special case are shorter than that of the initial‐Dirichlet boundary value problem for one‐dimensional general quasilinear wave equations. We clarify that although the lower bounds in this paper are same as that in the case of Robin boundary conditions obtained in the earlier paper, however, the results in this paper are not the trivial generalization of that in the case of Robin boundary conditions because the fundamental Lemmas 2.4, 2.5, 2.6, and 2.7, that is, the priori estimates of solutions to initial‐boundary value problems with Neumann boundary conditions, are established differently, and then the specific estimates in this paper are different from that in the case of Robin boundary conditions. Another motivation for the author to write this paper is to show that the well‐posedness of problem 1.1 is the essential precondition of studying the lower bounds of life span of classical solutions to initial‐boundary value problems for general quasilinear wave equations. The lower bound estimates of life span of classical solutions to initial‐boundary value problems is consistent with the actual physical meaning. Finally, we obtain the sharpness on the lower bound of the life span 1.8 in the general case and 1.10 in the special case. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper we consider a resolvent problem of the Stokes operator with some boundary condition in the half space, which is obtained as a model problem arising in evolution free boundary problems for viscous, incompressible fluid flow. We show standard resolvent estimates in the Lq framework (1 < q < ∞), applying some kernel estimates to concrete solution formulas. The Volevich trick in [21] plays a fundamental role in estimating solutions (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Error estimates for DGFE solutions are well investigated if one assumes that the exact solution is sufficiently regular. In this article, we consider a Dirichlet and a mixed boundary value problem for a linear elliptic equation in a polygon. It is well known that the first derivatives of the solutions develop singularities near reentrant corner points or points where the boundary conditions change. On the basis of the regularity results formulated in Sobolev–Slobodetskii spaces and weighted spaces of Kondratiev type, we prove error estimates of higher order for DGFE solutions using a suitable graded mesh refinement near boundary singular points. The main tools are as follows: regularity investigation for the exact solution relying on general results for elliptic boundary value problems, error analysis for the interpolation in Sobolev–Slobodetskii spaces, and error estimates for DGFE solutions on special graded refined meshes combined with estimates in weighted Sobolev spaces. Our main result is that there exist a local grading of the mesh and a piecewise interpolation by polynoms of higher degree such that we will get the same order O (hα) of approximation as in the smooth case. © 2011 Wiley Periodicals, Inc. Numer Mehods Partial Differential Eq, 2012  相似文献   

9.
The spectral theory for general non–selfadjoint elliptic boundary problems involving a discontinuous weight function has been well developed under certain restrictions concerning the weight function. In the course of extending the results so far established to a more general weight function, there arises the problem of establishing, in an Lp Sobolev space setting, the existence of and a priori estimates for solutions for a boundary problem for the half–space ?n+ involving a weight function which vanishes at the boundary xn = 0. In this paper we resolve this problem.  相似文献   

10.
《偏微分方程通讯》2013,38(5-6):907-943
ABSTRACT

Global solutions of the multidimensional Navier-Stokes equations for compressible heat-conducting flow are constructed, with spherically symmetric initial data of large oscillation between a static solid core and a free boundary connected to a surrounding vacuum state. The free boundary connects the compressible heat-conducting fluids to the vacuum state with free normal stress and zero normal heat flux. The fluids are initially assumed to fill with a finite volume and zero density at the free boundary, and with bounded positive density and temperature between the solid core and the initial position of the free boundary. One of the main features of this problem is the singularity of solutions near the free boundary. Our approach is to combine an effective difference scheme to construct approximate solutions with the energy methods and the pointwise estimate techniques to deal with the singularity of solutions near the free boundary and to obtain the bounded estimates of the solutions and the free boundary as time evolves. The convergence of the difference scheme is established. It is also proved that no vacuum develops between the solid core and the free boundary, and the free boundary expands with finite speed.  相似文献   

11.
We consider a quasilinear parabolic boundary value problem, the elliptic part of which degenerates near the boundary. In order to solve this problem, we approximate it by a system of linear degenerate elliptic boundary value problems by means of semidiscretization with respect to time. We use the theory of degenerate elliptic operators and weighted Sobolev spaces to find a priori estimates for the solutions of the approximating problems. These solutions converge to a local solution, if the step size of the time-discretization goes to zero. It is worth pointing out that we do not require any growth conditions on the nonlinear coefficients and right-hand side, since we lire able to prove L∞ - estimates.  相似文献   

12.

We study a singular perturbation problem for a nonlocal evolution operator. The problem appears in the analysis of the propagation of flames in the high activation energy limit, when admitting nonlocal effects.

We obtain uniform estimates and we show that, under suitable assumptions, limits are solutions to a free boundary problem in a viscosity sense and in a pointwise sense at regular free boundary points.

We study the nonlocal problem both for a single equation and for a system of two equations.

Some of the results obtained are new even when the operator under consideration is the heat operator.  相似文献   

13.
We consider the Dirichlet problem for non‐divergence parabolic equation with discontinuous in t coefficients in a half space. The main result is weighted coercive estimates of solutions in anisotropic Sobolev spaces. We give an application of this result to linear and quasi‐linear parabolic equations in a bounded domain. In particular, if the boundary is of class C1,δ , δ ∈ [0, 1], then we present a coercive estimate of solutions in weighted anisotropic Sobolev spaces, where the weight is a power of the distance to the boundary (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Gurevich  P. L. 《Mathematical Notes》2002,72(1-2):158-176
In this paper, we consider nonlocal elliptic problems in dihedral and plane angles. Such problems arise in the study of nonlocal problems in bounded domains for the case in which the support of nonlocal terms intersects the boundary. We study the Fredholm and unique solvability of this problem in the corresponding weighted spaces. Results are obtained by means of a priori estimates of the solutions and of Green's formula for nonlocal elliptic problems.  相似文献   

15.
In this paper, we study the stability of supersonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle of varying cross-sections. We formulate the problem as an initial–boundary value problem with the contact discontinuity as a free boundary. To deal with the free boundary value problem, we employ the Lagrangian transformation to straighten the contact discontinuity and then the free boundary value problem becomes a fixed boundary value problem. We develop an iteration scheme and establish some novel estimates of solutions for the first order of hyperbolic equations on a cornered domain. Finally, by using the inverse Lagrangian transformation and under the assumption that the incoming flows and the nozzle walls are smooth perturbations of the background state, we prove that the original free boundary problem admits a unique weak solution which is a small perturbation of the background state and the solution consists of two smooth supersonic flows separated by a smooth contact discontinuity.  相似文献   

16.
Hu  Guo En  Zhu  Yue Ping 《数学学报(英文版)》2013,29(3):505-514
In this paper, by a sharp function estimate and an idea of Lerner, the authors establish someweighted estimates for the m-multilinear integral operator which is bounded from L1(Rn)×···×L1 (Rn)to L1/m,∞ (Rn),, and the associated kernel K(x; y1, . . . , ym)) enjoys a regularity on the variable x. As anapplication, weighted estimates with general weights are given for the commutator of Calderón.  相似文献   

17.
The boundary value problems for differential-operator equations with variable coefficients, degenerated on all boundary are studied. Several conditions for the separability, fredholmness and resolvent estimates in L p -spaces are given. In applications degenerate Cauchy problem for parabolic equation, boundary value problems for degenerate partial differential equations and systems of degenerate elliptic equations on cylindrical domain are studied.  相似文献   

18.
This paper concerns a n-dimensional spherically symmetric model for the combustion of a viscous, compressible, radiative-reactive gas with a chemical kinetics equation. Under suitable assumptions, we establish some uniform-in-time estimates of global solutions to this model which improve some known results.  相似文献   

19.

The work presents the qualitative analysis of the free boundary value problem related to the detachment process in multispecies biofilms. In the framework of continuum approach to one-dimensional mathematical modelling of multispecies biofilm growth, we consider the system of nonlinear hyperbolic partial differential equations governing the microbial species growth, the differential equation for the biomass velocity, the differential equation that governs the free boundary evolution and also accounts for detachment, and the elliptic system for substrate dynamics. The characteristics are used to convert the original moving boundary equation into a suitable differential equation useful to solve the mathematical problem. We also provide another form of the same equation that could be used in numerical applications. Several properties of the solutions to the free boundary problem are shown, such as positiveness of the functions that describe the microbial concentrations and estimates on the characteristic functions. Uniqueness and existence of solutions are proved by introducing a suitable system of Volterra integral equations and using the fixed point theorem.

  相似文献   

20.
The paper is concerned with boundary singularities of weak solutions of boundary value problems governed by the biharmonic operator. The presence of angular corner points or points at which the type of boundary condition changes in general causes local singularities in the solution. For that case the general theory of V. A. Kondrat'ev provides a priori estimates in weighted Sobolev norms and asymptotic singular representations for the solution which essentially depend on the zeros of certain transcendental functions. The distribution of these zeros will be analysed in detail for the biharmonic operator under several boundary conditions. This leads to sharp a priori estimates in weighted Sobolev norms where the weight function is characterized by the inner angle of the boundary corner. Such estimates for “negative” Sobolev norms are used to analyse also weakly nonlinear perturbations of the biharmonic operator as, for instance, the von Kármán model in plate bending theory and the stream function formulation of the steady state Navier-Stokes problem. It turns out that here the structure of the corner singularities is essentially the same as in the corresponding linear problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号