首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
Exact analytical solutions for the velocity profiles and flow rates have been obtained in explicit forms for the Poiseuille and Couette-Poiseuille flow of a third grade fluid between two parallel plates. These exact solutions match well with their numerical counter parts and are better than the recently developed approximate analytical solutions. Besides, effects of various parameters on the velocity profile and flow rate have been studied.  相似文献   

2.
The propagation of a spherical shock wave in a non‐ideal gas with or without gravitational effects is investigated under the action of monochromatic radiation. Similarity solutions are obtained for adiabatic flow between the shock and the piston. The numerical solutions are obtained using the Runge‐Kutta method of the fourth order. The density of the gas is assumed to be constant. The total energy of the shock wave is non‐constant and varies with time. The effects of change in values of non‐idealness parameter, gravitational parameter, shock Mach number, radiation parameter, and adiabatic exponent of the gas on shock strength and flow variables are worked out in detail. It is investigated that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and, therefore, the distance between the inner contact surface and the shock surface is reduced. A comparison is also made between the solutions in the cases of the gravitating and the non‐gravitating media. It is manifested that the gravitational parameter and the radiation parameter have in general opposite behaviour on the flow variables and the shock strength.  相似文献   

3.
R-M不稳定性数值模拟方法   总被引:4,自引:0,他引:4  
赵宁  余彦  唐维军 《计算数学》2001,23(4):477-490
1.引 言 受扰动的两轻重流体的交界面,当处于方向由重流体指向轻流体的有效重力场中或受到冲击波作用时扰动将发展,界面将失稳,两种物质将发生湍流混合.重力场作用下的不稳定性,人们常称为Rayleigh-Taylor(简称R-T)不稳定性,激波作用下的界面不稳定性,则常称为 Richtmyer-Meshkov(简称 R-M)不稳定性.在惯性约束核聚变(ICF)中,由于R-T和R-M不稳定性的作用,将影响到氘氚气体的内爆压缩、升温、点火和燃烧[7]. 界面不稳定性的研究因其应用背景和学术价值在近二十多年受…  相似文献   

4.
Approximate analytical solutions are obtained for self-similar flows behind strong shocks with variable energy deposition or withdrawal at the wavefront in a perfect gas at rest with constant initial density. Numerical solutions are also obtained and the approximate solutions agree with these solutions. The effect of the adiabatic index on the solutions is investigated. The dependence of shock density ratio on the parameter characterizing the energy of the flow is studied. It is observed that the rate of deposition of energy at the wavefront decreases with increase of the parameter that specifies the total energy of the flow.  相似文献   

5.
To analyze the hypersonic flow past a conical cone, the variations of gasdynamic properties subjected to the longitudinal curvature effect by using the perturbation method. An outer perturbation expansion has been carried out by recent researchers, but a problem occurred, the outer expansion solutions are not uniformly valid in the shock layer, however, the outcome near the conical body surface called vortical layer remains deflective. This study intends to discover uniformly valid analytical solutions in the shock layer by applying the inner perturbation expansions matching with the out expansions to analyze the characteristics in the whole region including shock layer and vortical layer. Starting from the zero-order approximate solutions for hypersonic conical flow is then applied as the basic solutions for the outer perturbation expansions of a flow field. The governing equations and boundary conditions are also expanded via outer perturbations. Using an approximate analytical scheme in the derivation process, first-order perturbation equations can be simplified and the approximate closed-form solutions are obtained; furthermore, the various flow field quantities, including the normal force coefficient on the cone surface, have been calculated. According to the variations of gasdynamic properties, the longitudinal curvature effect for the hypersonic flow past a conical cone can be determined. Thicknesses of shock layer and vortical layer can be predicted as well. The physical phenomena inside both layers can be investigated carefully, the conditions for an elliptic cone with longitudinal curvature, m = 1 and n = 2 and other conditions of parameters; the perturbation parameter, εm2 = 0.1, semi-vertex angle of the unperturbed cone, δ = 10°, and hypersonic similarity parameter, Kδ = Mδ = 1.0, the thickness of vortical layer, ηVL, can be calculated at the position angle of conical cone body, ? = 30° was demonstrated here. Results show how very thin the vortical layer is approximately only 10% of the shock layer close to the body, the pressure in the whole shock layer is verified to be uniformly valid which agrees with previous studies. Large gradient changes in entropy and density are found when the flow approaches the cone surface, the most important is, this method provides a benchmark solution to the hypersonic flow past a conical cone and to assist the grids and numerics for numerical computation should be fashioned to accommodate the whole flow field region including the vortical layer of rapid adjustment, and let the analysis become more effective and low cost.  相似文献   

6.
Chauhan  Antim  Arora  Rajan  Tomar  Amit 《Ricerche di matematica》2022,71(2):297-313

The similarity solutions to the problem of cylindrically symmetric strong shock waves in an ideal gas with a constant azimuthal magnetic field are presented. The flow behind the shock wave is assumed to spatially isothermal rather than adiabatic. We use the method of Lie group invariance to determine the possible class of self-similar solutions. Infinitesimal generators of Lie group transformations are determined by using the invariance surface conditions to the system and on the basis of arbitrary constants occurring in the expressions for the generators, four different possible cases of the solutions are reckoned and we observed that only two out of all possibilities hold self-similar solutions, one of which follows the power law and another follows the exponential law. To obtain the similarity exponents numerical calculations have been performed and comparison is made with the existing results in the literature. The flow patterns behind the shock are analyzed graphically.

  相似文献   

7.
To solve the boundary-value problem for cylindrical orthotropic shell with sizeable rectangular hole we suggest analytical and numerical method of finite bodies. For determination of the stress state of orthotropic thin-walled cylinder we use a systemof equations that exactly satisfies the equilibrium equations of orthotropic cylindrical shell. Representation of the solutions is divided into basic and self-equilibrium state. For some loads of a shell we build the basic stress state. We obtain a countable number of resolving functions that exactly satisfy the equations of a shell and describe the self-equilibrium stress state. We develop the algorithm of the analytical and numerical solutions of boundary-value problem based on approximation of the stress state of a shell by finite sum of resolving functions and propose a universal way of reduction of all conditions of the contact parts of the enclosure and the boundary conditions to minimize the generalized quadratic forms. We establish criteria under which the construction of approximate solutions coincides with the exact one.  相似文献   

8.
He's energy balance method (HEBM) is employed in this article to obtain the analytical approximate solution of the generalized nonlinear oscillator. Existence of periodic solutions is analytically verified and consequently the relationship between the natural frequency and the initial amplitude is obtained in an analytical form. A number of numerical simulations are carried out and accuracy of the HEBM is then examined within an error analysis. The exact values of the natural frequency numerically obtained via the elliptic integrals are taken into account as the references bases and the relative error is then evaluated for a range of oscillation amplitudes. Excellent correlation of the approximate frequencies with the exact ones demonstrates that the approximate solutions are quite consistent even for large amplitudes of oscillation.  相似文献   

9.
This paper reports the explicit analytical solutions for Kolmogorov’s equations. Kolmogorov’s equations are commonly used to describe the structure of local isotropic turbulence, but their exact analytical solutions have not yet been found. In this paper, the closed-form solutions for two kinds of Kolmogorov’s equations are obtained. The derivations of the approximate solutions are based on the homotopy analysis method, which is a new tool for obtaining the approximate analytical solutions of both strong and weak nonlinear differential equations. To examine the validity of the approximate solutions, numerical comparisons between results from the homotopy analysis method and the fourth-order Runge-Kutta method are carried out. It is shown that the results are in good agreement.  相似文献   

10.
This paper is focused on nonlinear dynamic response of internal cantilever beam system on a steadily rotating ring via a nonlinear dynamic model. The analytical approximate solutions to the oscillation motion are obtained by combining Newton linearization with Galerkin's method. Numerical solutions could be obtained by using the shooting method on the exact governing equation. Compared with numerical solutions, the approximate analytical solutions here show excellent accuracy and rapid convergence. Two different kinds of oscillating internal cantilever beam system on a steadily rotating ring are investigated by using the analytical approximate solutions. These include symmetric vibration through three equilibrium points, and asymmetric vibration through the only trivial equilibrium point. The effects of geometric and physical parameters on dynamic response are useful and can be easily applied to design practical engineering structures. In particular, the ring angular velocity plays a significant role on the period and periodic solution of the beam oscillation. In conclusion, the analytical approximate solutions presented here are sufficiently precise for a wide range of oscillation amplitudes.  相似文献   

11.
In this paper the kinematics of a curved shock of arbitrary strength has been discussed using the theory of generalised functions. This is the extension of Moslov’s work where he has considered isentropic flow even across the shock. The condition for a nontrivial jump in the flow variables gives the shock manifold equation (sme). An equation for the rate of change of shock strength along the shock rays (defined as the characteristics of the sme) has been obtained. This exact result is then compared with the approximate result of shock dynamics derived by Whitham. The comparison shows that the approximate equations of shock dynamics deviate considerably from the exact equations derived here. In the last section we have derived the conservation form of our shock dynamic equations. These conservation forms would be very useful in numerical computations as it would allow us to derive difference schemes for which it would not be necessary to fit the shock-shock explicitly.  相似文献   

12.
An approximate semi-analytical method for solving integral equations generated by mixed problems of the theory of elasticity for inhomogeneous media is developed. An effective algorithm for constructing approximations of transforms of the kernels of integral equations by analytical expressions of a special type is proposed, and closed analytical solutions are presented. A comparative analysis of the approximation algorithms is given. The accuracy of the method is analysed using the example of the contact problem of the torsion of a medium with a non-uniform coating by a stiff circular punch. The relation between the error of the approximation of the transform of a kernel by special analytical expressions, constructed using different algorithms and the error of approximate solutions of the corresponding contact problems is investigated using a numerical experiment.  相似文献   

13.
Hypersonic flows of a viscous perfect rarefied gas over blunt bodies in a transitional flow regime from continuum to free molecular, characteristic when spacecraft re-enter Earth's atmosphere at altitudes above 90-100 km, are considered. The two-dimensional problem of hypersonic flow is investigated over a wide range of free stream Knudsen numbers using both continuum and kinetic approaches: by numerical and analytical solutions of the continuum equations, by numerical solution of the Boltzmann kinetic equation with a model collision integral in the form of the S-model, and also by the direct simulation Monte Carlo method. The continuum approach is based on the use of asymptotically correct models of a thin viscous shock layer and a viscous shock layer. A refinement of the condition for a temperature jump on the body surface is proposed for the viscous shock layer model. The continuum and kinetic solutions, and also the solutions obtained by the Monte Carlo method are compared. The effectiveness, range of application, advantages and disadvantages of the different approaches are estimated.  相似文献   

14.
An efficient and new implicit perturbation technique is used to obtain approximate analytical series solution of Brinkmann equation governing the two-dimensional stagnation point flow in a porous medium. Analytical approximate solution of the classical two-dimensional stagnation point flow is obtained as a limiting case. Also, it is shown that the obtained higher order series solutions agree well with the computed numerical solutions.  相似文献   

15.
密封容器组合壳自由振动的精确解   总被引:4,自引:0,他引:4  
给出了一类密封容器组合壳自由振动问题的精确解,基于Love经典薄壳理论,导出了具有任意经线形状的旋转壳体在轴对称振动时的基本方程,组合壳结构中球壳与柱壳的连接条件是通过连接处的变形连续性和内力平衡关系得出的。问题的数学模型被归结为常微分方程组在球壳和 壳两个区间上的特征值问题。振动模态函数是由Legendre和三角函数构造出来,并且得到了精确的频率方程。所有的计算都是在Maple程序下运行的,无论是精确的符号运算还是具有所需有效数学精度的数值计算,都表明该文所编译的Maple程序是简单而有效的。固有频率的数值结果同文献中有限元法和其它数值方法的结果作了比较。作为一个标准,该文给出的精确解对于检验各种近似方法的精密度是有价值的。  相似文献   

16.
17.
The hypersonic flow around smooth blunted bodies in the presence of intensive injection from the surface of these is considered. Using the method of external and internal expansions the asymptotics of the Navier-Stokes equations is constructed for high Reynolds numbers determined by parameters of the oncoming stream and of the injected gas. The flow in the shock layer falls into three characteristic regions. In regions adjacent to the body surface and the shock wave the effects associated with molecular transport are insignificant, while in the intermediate region they predominate. In the derivation of solution in the first two regions the surface of contact discontinuity is substituted for the region of molecular transport (external problem). An analytic solution of the external problem is obtained for small values of parameters 1 = ρs* and δ = ρω*1/2νω*1/2ν, in the form of corresponding series expansions in these parameters. Asymptotic formulas are presented for velocity profiles, temperatures, and constituent concentration across the shock layer and, also, the shape of the contact discontinuity and of shock wave separation. The derived solution is compared with numerical solutions obtained by other authors. The flow in the region of molecular transport is defined by equations of the boundary layer with asymptotic conditions at plus and minus infinity, determined by the external solution (internal problem). A numerical solution of the internal problem is obtained taking into consideration multicomponent diffusion and heat exchange. The problem of multicomponent gas flow in the shock layer close to the stagnation line was previously considered in [1] with the use of simplified Navier-6tokes equations.The supersonic flow of a homogeneous inviscid and non-heat-conducting gas around blunted bodies in the presence of subsonic injection was considered in [2–7] using Euler's equations. An analytic solution, based on the classic solution obtained by Hill for a spherical vortex, was derived in [2] for a sphere on the assumption of constant but different densities in the layers between the shock wave and the contact discontinuity and between the latter and the body. Certain results of a numerical solution of the problem of intensive injection at the surface of axisymmetric bodies of various forms, obtained by Godunov's method [3], are presented. Telenin's method was used in [4] for numerical investigation of flow around a sphere; the problem was solved in two formulations: in the first, flow parameters were determined for the whole of the shock layer, while in the second this was done for the sutface of contact discontinuity, which was not known prior to the solution of the problem, with the pressure specified by Newton's formula and flow parameters determined only in the layer of injected gases. The flow with injection over blunted cones was numerically investigated in [5] by the approximate method proposed by Maslen. The flow in the shock layer in the neighborhood of the stagnation line was considered in [6, 8], and intensive injection was investigated by methods of the boundary layer theory in [8–12].  相似文献   

18.
The main objective of this paper is to use the reduced differential to transform method (RDTM) for finding the analytical approximate solutions of two integral members of nonlinear Kadomtsev–Petviashvili (KP) hierarchy equations. Comparing the approximate solutions which obtained by RDTM with the exact solutions to show that the RDTM is quite accurate, reliable and can be applied for many other nonlinear partial differential equations. The RDTM produces a solution with few and easy computation. This method is a simple and efficient method for solving the nonlinear partial differential equations. The analysis shows that our analytical approximate solutions converge very rapidly to the exact solutions.  相似文献   

19.
Self-similar solutions are obtained for one-dimensional isothermal and adiabatic unsteady flows behind a strong spherical shock wave propagating in a dusty gas. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of a non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The medium is under the influence of the gravitational field due to a heavy nucleus at the origin (Roche model). The effects of an increase in the mass concentration of solid particles, the ratio of the density of the solid particles to the initial density of the gas, the gravitational parameter and the parameter of non-idealness of the gas in the mixture, are investigated. It is shown that due to presence of gravitational field the compressibility of the medium at any point in the flow-field behind the shock decreases and all other flow-variables and the shock strength increase. A comparison has also been made between the isothermal and adiabatic flows. It is investigated that the singularity in the density and compressibility distributions near the piston in the case of adiabatic flow are removed when the flow is isothermal.  相似文献   

20.
In this paper, we construct the exact solution for fluid motion caused by the uniform expansion of a cylindrical or spherical piston into still air. Following Lighthill [1], we introduce velocity potential into the analysis and seek a similarity form of the solution. We find both numerical and analytic solutions of the second order nonlinear differential equation, with the boundary conditions at the shock and at the piston. The results obtained from the analytic solutions justify numerical solution and the approximate solution of Lighthill [1]. We find that although the approximate solution of Lighthill [1] gives remarkably good numerical results, the analytic form of that solution is not mathematically satisfactory. We also find that in case of spherical piston motion Lighthill’s [1] solution differs significantly from that of our analytic and numerical solutions. We use Pade′ approximation to extend the radius of convergence of the series solution. We also carry out some local analysis at the boundary to obtain some singular solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号