首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We study perturbation bound and structured condition number about the minimal nonnegative solution of nonsymmetric algebraic Riccati equation, obtaining a sharp perturbation bound and an accurate condition number. By using the matrix sign function method we present a new method for finding the minimal nonnegative solution of this algebraic Riccati equation. Based on this new method, we show how to compute the desired M-matrix solution of the quadratic matrix equation X^2 - EX - F = 0 by connecting it with the nonsymmetric algebraic Riccati equation, where E is a diagonal matrix and F is an M-matrix.  相似文献   

2.
We study perturbation bound and structured condition number about the minimalnonnegative solution of nonsymmetric algebraic Riccati equation,obtaining a sharp per-turbation bound and an accurate condition number.By using the matrix sign functionmethod we present a new method for finding the minimal nonnegative solution of this al-gebraic Riccati equation.Based on this new method,we show how to compute the desiredM-matrix solution of the quadratic matrix equation X~2-EX-F=0 by connecting itwith the nonsymmetric algebraic Riccati equation,where E is a diagonal matrix and F isan M-matrix.  相似文献   

3.
The paper is concerned with recursive methods for obtaining the stabilizing solution of coupled algebraic Riccati equations arising in the linear-quadratic control of Markovian jump linear systems by solving at each iteration uncoupled algebraic Riccati equations. It is shown that the new updates carried out at each iteration represent approximations of the original control problem by control problems with receding horizon, for which some sequences of stopping times define the terminal time. Under this approach, unlike previous results, no initialization conditions are required to guarantee the convergence of the algorithms. The methods can be ordered in terms of number of iterations to reach convergence, and comparisons with existing methods in the current literature are also presented. Also, we extend and generalize current results in the literature for the existence of the mean-square stabilizing solution of coupled algebraic Riccati equations.  相似文献   

4.
针对源于Markov跳变线性二次控制问题中的一类对偶代数Riccati方程组,分别采用修正共轭梯度算法和正交投影算法作为非精确Newton算法的内迭代方法,建立求其对称自反解的非精确Newton-MCG算法和非精确Newton-OGP算法.两种迭代算法仅要求Riccati方程组存在对称自反解,对系数矩阵等没有附加限定.数值算例表明,两种迭代算法是有效的.  相似文献   

5.
We investigate the solution of large-scale generalized algebraic Bernoulli equations as those arising in control and systems theory. Here, we discuss algorithms based on a generalization of the Newton iteration for the matrix sign function. The algorithms are easy to parallelize and provide an efficient numerical tool to solve large-scale problems. Both the accuracy and the parallel performance of our implementations on a cluster of Intel Xeon processors are reported.   相似文献   

6.
In this paper, we present a convergence analysis of the inexact Newton method for solving Discrete-time algebraic Riccati equations (DAREs) for large and sparse systems. The inexact Newton method requires, at each iteration, the solution of a symmetric Stein matrix equation. These linear matrix equations are solved approximatively by the alternating directions implicit (ADI) or Smith?s methods. We give some new matrix identities that will allow us to derive new theoretical convergence results for the obtained inexact Newton sequences. We show that under some necessary conditions the approximate solutions satisfy some desired properties such as the d-stability. The theoretical results developed in this paper are an extension to the discrete case of the analysis performed by Feitzinger et al. (2009) [8] for the continuous-time algebraic Riccati equations. In the last section, we give some numerical experiments.  相似文献   

7.
In this paper we study a continuous-time multiparameter algebraic Riccati equation (MARE) with an indefinite sign quadratic term. The existence of a unique and bounded solution of the MARE is newly established. We show that the Kleinman algorithm can be used to solve the sign indefinite MARE. The proof of the convergence and the existence of the unique solution of the Kleinman algorithm is done by using the Newton-Kantorovich theorem. Furthermore, we present new algorithms for solving the generalized multiparameter algebraic Lyapunov equation (GMALE) by means of the fixed-point algorithm.  相似文献   

8.
An algorithm for computing proper deflating subspaces with specified spectrum for an arbitrary matrix pencil is presented. The method uses refined algorithms for computing the generalized Schur form of a matrix pencil and enlightens the connection that exists between reducing and proper deflating subspaces. The proposed algorithm can be applied for computing the stabilizing solution of the generalized algebraic Riccati equation, a recently introduced concept which extends the usual algebraic Riccati equation.  相似文献   

9.
Summary In this paper we study the numerical factorization of matrix valued functions in order to apply them in the numerical solution of differential algebraic equations with time varying coefficients. The main difficulty is to obtain smoothness of the factors and a numerically accessible form of their derivatives. We show how this can be achieved without numerical differentiation if the derivative of the given matrix valued function is known. These results are then applied in the numerical solution of differential algebraic Riccati equations. For this a numerical algorithm is given and its properties are demonstrated by a numerical example.  相似文献   

10.
In this article, a new equation is derived for the optimal feedback gain matrix characterizing the solution of the standard linear regulator problem. It will be seen that, in contrast to the usual algebraic Riccati equation which requires the solution ofn(n + 1)/2 quadratically nonlinear algebraic equations, the new equation requires the solution of onlynm such equations, wherem is the number of system input terminals andn is the dimension of the state vector of the system. Utilizing the new equation, results are presented for the inverse problem of linear control theory.  相似文献   

11.
The aim of this note is to generalize and apply results on matrix continued fractions representing the solution of discrete matrix Riccati equations. Assuming uniform bounds for the norm of the matrix coefficients of the continued fraction, the minimal and maximal solutions of the corresponding algebraic Riccati equation can be accurately enclosed.  相似文献   

12.
We start with a discussion of coupled algebraic Riccati equations arising in the study of linear-quadratic optimal control problems for Markov jump linear systems. Under suitable assumptions, this system of equations has a unique positive semidefinite solution, which is the solution of practical interest. The coupled equations can be rewritten as a single linearly perturbed matrix Riccati equation with special structures. We study the linearly perturbed Riccati equation in a more general setting and obtain a class of iterative methods from different splittings of a positive operator involved in the Riccati equation. We prove some special properties of the sequences generated by these methods and determine and compare the convergence rates of these methods. Our results are then applied to the coupled Riccati equations of jump linear systems. We obtain linear convergence of the Lyapunov iteration and the modified Lyapunov iteration, and confirm that the modified Lyapunov iteration indeed has faster convergence than the original Lyapunov iteration.  相似文献   

13.
Combining Fourier series expansion with recursive matrix formulas, new reliable algorithms to compute the periodic, non-negative, definite stabilizing solutions of the periodic Riccati and Lyapunov matrix differential equations are proposed in this paper. First, periodic coefficients are expanded in terms of Fourier series to solve the time-varying periodic Riccati differential equation, and the state transition matrix of the associated Hamiltonian system is evaluated precisely with sine and cosine series. By introducing the Riccati transformation method, recursive matrix formulas are derived to solve the periodic Riccati differential equation, which is composed of four blocks of the state transition matrix. Second, two numerical sub-methods for solving Lyapunov differential equations with time-varying periodic coefficients are proposed, both based on Fourier series expansion and the recursive matrix formulas. The former algorithm is a dimension expanding method, and the latter one uses the solutions of the homogeneous periodic Riccati differential equations. Finally, the efficiency and reliability of the proposed algorithms are demonstrated by four numerical examples.  相似文献   

14.
In this paper, the problem of the numerical computation of the stabilizing solution of the game theoretic algebraic Riccati equation is investigated. The Riccati equation under consideration occurs in connection with the solution of the H  ∞  control problem for a class of stochastic systems affected by state dependent and control dependent white noise. The stabilizing solution of the considered game theoretic Riccati equation is obtained as a limit of a sequence of approximations constructed based on stabilizing solutions of a sequence of algebraic Riccati equations of stochastic control with definite sign of the quadratic part. The efficiency of the proposed algorithm is demonstrated by several numerical experiments.  相似文献   

15.
Differential matrix equations appear in many applications like optimal control of partial differential equations, balanced truncation model order reduction of linear time varying systems and many more. Here, we will focus on differential Riccati equations (DRE). Solving such matrix-valued ordinary differential equations (ODE) is a highly time consuming process. We present a Parareal based algorithm applied to Rosenbrock methods for the solution of the matrix-valued differential Riccati equations. Considering problems of moderate size, direct matrix equation solvers for the solution of the algebraic Lyapunov equations arising inside the time intgration methods are used. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Summary This paper is concerned with the solution of the finite time Riccati equation. The solution to the Riccati equation is given in terms of the partition of the transition matrix. Matrix differential equations for the partition of the transition matrix are derived and are solved using computational methods. Examples illustrating the method are presented and the computational algorithms are given.  相似文献   

17.
The present paper gives an algorithm for the construction of the zeroth and first approximations of the solution of the algebraic matrix Riccati equation when the real part of the eigenvalues of the corresponding Hamiltonian matrix are much less than their imaginary parts. Unlike [1, 2] the basis of this algorithm is the construction of a transformation of the Hamiltonian matrix which conserves the eigenvectors of the matrix and changes its spectrum in the required direction (similar transformations were used in [3] to accelerate the convergence of the procedure for the construction of a matrix sign function).Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 39, No. 1, pp. 52–56, January–February, 1987.  相似文献   

18.
New multivariable asymmetric public-key encryption schemes based on the NP-complete problem of simultaneous algebraic Riccati equations over finite fields are suggested. We also provide a systematic way to describe any set of quadratic equations over any field, as a set of algebraic Riccati equations. This has the benefit of systematic algebraic crypt-analyzing any encryption scheme based on quadratic equations, to any possible vulnerable hidden structure, in view of the fact that the set of all solutions to any given single algebraic Riccati equation is fully described in terms of all the T-invariant subspaces of some restricted dimension, where T is the matrix of coefficients of the related algebraic Riccati equation.  相似文献   

19.
Matrix Riccati equations appear in numerous applications, especially in control engineering. In this paper we derive analytical formulas for exact solutions of algebraic and differential matrix Riccati equations. These solutions are expressed in terms of matrix transfer functions of appropriate linear dynamical systems.  相似文献   

20.
Delta算子Riccati方程研究的新结果   总被引:1,自引:0,他引:1  
张端金  刘侠  吴捷 《应用数学》2003,16(3):104-107
基于Delta算子描述,统一研究连续时间代数Riccati方程(CARE)和离散时间代数Riccati方程(DARE)的定界估计问题,提出了统一代数Riccati方程(UARE)解矩阵的上下界,给出UARE中P与R和Q的几个基本关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号