首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory and checked up by numerical simulations. Chaos, in the sense of Marotto, is also proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and richer dynamics behaviors. More specifically, this paper presents the finding of period-one orbit, period-three orbits, and chaos in the sense of Marotto, complete period-doubling bifurcation and invariant circle leading to chaos with a great abundance period-windows, simultaneous occurrance of two different routes (invariant circle and inverse period- doubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation) to chaos for a given bifurcation parameter, period doubling bifurcation with period-three orbits to chaos, suddenly appearing or disappearing chaos, different kind of interior crisis, nice chaotic attractors, coexisting (2,3,4) chaotic sets, non-attracting chaotic set, and so on, in the discrete-time predator-prey system. Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding is given of the discrete-time predator-prey systems with Allee effect and without Allee effect.  相似文献   

2.
In this paper, a discrete-time predator-prey system with Holling-IV functional response is studied. We first classify the existence of the fixed points of the system, and further investigate their local stabilities. Then the local bifurcation theory for maps is applied to explore the variety of dynamics of the system. Sufficient conditions for the flip bifurcation and Neimark–Sacker bifurcation are provided. Numerical results demonstrate that the system may have more complex dynamical behaviors including multiple periodic orbits, quasi-periodic orbits and chaotic behavior. The maximum Lyapunov exponent and sensitivity analysis also confirm the chaotic dynamical behaviors of the system.  相似文献   

3.
We investigate the dynamics of a discrete-time predator-prey system of Leslie type. We show algebraically that the system passes through a flip bifurcation and a Neimark-Sacker bifurcation in the interior of $\R^{2}_+$ using center manifold theorem and bifurcation theory. Numerical simulations are implimented not only to validate theoretical analysis but also exhibits chaotic behaviors, including phase portraits, period-11 orbits, invariant closed circle, and attracting chaotic sets. Furthermore, we compute Lyapunov exponents and fractal dimension numerically to justify the chaotic behaviors of the system. Finally, a state feedback control method is applied to stabilize the chaotic orbits at an unstable fixed point.  相似文献   

4.
This paper is devoted to study a discrete time predator-prey system of Leslie type with generalized Holling type III functional response obtained using the forward Euler scheme. Taking the integration step size as the bifurcation parameter and using the center manifold theory and bifurcation theory, it is shown that by varying the parameter the system undergoes flip bifurcation and Neimark-Sacker bifurcation in the interior of $\mathbb{R}_+^2$. Numerical simulations are implemented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as cascade of period-doubling bifurcation in period-$2$, $4$, $8$, quasi-periodic orbits and the chaotic sets. These results shows much richer dynamics of the discrete model compared with the continuous model. The maximum Lyapunov exponent is numerically computed to confirm the complexity of the dynamical behaviors. Moreover, we have stabilized the chaotic orbits at an unstable fixed point using the feedback control method.  相似文献   

5.
A discrete predator-prey system with Holling type-IV functional response obtained by the Euler method is first investigated. The conditions of existence for fold bifurcation, flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory. Furthermore, we give the condition for the occurrence of codimension-two bifurcation called the Bogdanov-Takens bifurcation for fixed points and present approximate expressions for saddle-node, Hopfand homoclinic bifurcation sets near the Bogdanov-Takens bifurcation point. We also show the existence of degenerated fixed point with codimension three at least. The numerical simulations, including bifurcation diagrams, phase portraits, and computation of maximum Lyapunov exponents, not only show the consistence with the theoretical analysis but also exhibit the rich and complex dynamical behaviors such as the attracting invariant circle, period-doubling bifurcation from period-2,3,4 orbits.interior crisis, intermittency mechanic, and sudden disappearance of chaotic dynamic.  相似文献   

6.
A diffusive predator-prey system with Holling type-II predator functional response subject to Neumann boundary conditions is considered. Hopf and steady state bifurcation analysis are carried out in details. In particular we show the existence of multiple spatially non-homogeneous periodic orbits while the system parameters are all spatially homogeneous. Our results and global bifurcation theory also suggest the existence of loops of spatially non-homogeneous periodic orbits and steady state solutions. These results provide theoretical evidences to the complex spatiotemporal dynamics found by numerical simulation.  相似文献   

7.
The present paper revisits a three dimensional (3D) autonomous chaotic system with four-wing occurring in the known literature [Nonlinear Dyn (2010) 60(3): 443--457] with the entitle ``A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems'' and is devoted to discussing its complex dynamical behaviors, mainly for its non-isolated equilibria, Hopf bifurcation, heteroclinic orbit and singularly degenerate heteroclinic cycles, etc. Firstly, the detailed distribution of its equilibrium points is formulated. Secondly, the local behaviors of its equilibria, especially the Hopf bifurcation, are studied. Thirdly, its such singular orbits as the heteroclinic orbits and singularly degenerate heteroclinic cycles are exploited. In particular, numerical simulations demonstrate that this system not only has four heteroclinic orbits to the origin and other four symmetry equilibria, but also two different kinds of infinitely many singularly degenerate heteroclinic cycles with the corresponding two-wing and four-wing chaotic attractors nearby.  相似文献   

8.
In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory, and then further illustrated by numerical simulations. Chaos in the sense of Marotto is proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and rich dynamical behavior. More specifically, apart from stable dynamics, this paper presents the finding of chaos in the sense of Marotto together with a host of interesting phenomena connected to it. The analytic results and numerical simulations demostrates that the Allee constant plays a very important role for dynamical behavior. The dynamical behavior can move from complex instable states to stable states as the Allee constant increases (within a limited value). Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding of the discrete-time predator-prey with Allee effect is given.  相似文献   

9.
《Applied Mathematical Modelling》2014,38(19-20):4835-4848
The discrete-time predator–prey biological economic system obtained by Euler method is investigated. Some conditions for the system to undergo flip bifurcation and Neimark–Sacker bifurcation are derived by using new normal form of differential-algebraic system, center mainfold theorem and bifurcation theory. Numerical simulations are given to show the effectiveness of our results and also to exhibit period-doubling bifurcation in orbits of period 2, 4, 8 and chaotic sets. The results obtained here reveal far richer dynamics in discrete differential-algebraic biological economic system. The contents are interesting in mathematics and biology.  相似文献   

10.
In this paper, we investigate the dynamics of a nonlinear economic cycle model. The necessary and sufficient conditions are given to guarantee the existence and stability of the fixed point. It is also shown that the system undergoes a Neimark–Sacker bifurcation by using center manifold theorem and bifurcation theory. Furthermore, Marotto’s chaos is proved when certain conditions are satisfied. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviour, such as the period-10, -16, -20 orbits, attracting invariant cycles, quasi-periodic orbits, 10-coexisting chaotic attractors, and boundary crisis. Specifically, we have stabilized the chaotic orbits at an unstable fixed point using the feedback control method.  相似文献   

11.
The dynamics of a discrete-time predator–prey system is investigated in the closed first quadrant R+2. It is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of R+2 by using a center manifold theorem and bifurcation theory. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as orbits of period 7, 14, 21, 63, 70, cascades of period-doubling bifurcation in orbits of period 2, 4, 8, quasi-periodic orbits and chaotic sets. These results show far richer dynamics of the discrete model compared with the continuous model. Specifically, we have stabilized the chaotic orbits at an unstable fixed point using the feedback control method.  相似文献   

12.
In this work, we consider some dynamical properties and specific contactbifurcations of a discrete-time predator-prey system having inverseswith vanishing denominator. The dynamics is investigated by usingconcepts of focal points, prefocal curves and bifurcation theory.The system undergoes flip bifurcation and Neimark-Sacker bifurcation.Numerical simulations are presented not only to illustrate our resultswith the theoretical analysis, but also to confirm further the complexityof the dynamical behaviors as extinction, persistence and permanence.  相似文献   

13.
A proposed discretized form of fractional‐order prey‐predator model is investigated. A sufficient condition for the solution of the discrete system to exist and to be unique is determined. Jury stability test is applied for studying stability of equilibrium points of the discretized system. Then, the effects of varying fractional order and other parameters of the systems on its dynamics are examined. The system undergoes Neimark‐Sacker and flip bifurcation under certain conditions. We observe that the model exhibits chaotic dynamics following stable states as the memory parameter α decreases and step size h increases. Theoretical results illustrate the rich dynamics and complexity of the model. Numerical simulation validates theoretical results and demonstrates the presence of rich dynamical behaviors include S‐asymptotically bounded periodic orbits, quasi‐periodicity, and chaos. The system exhibits a wide range of dynamical behaviors for fractional‐order α key parameter.  相似文献   

14.
This paper investigates the dynamics of an improved discrete Leslie-Gower predator-prey model with prey refuge and fear factor. First, a discrete Leslie-Gower predator-prey model with prey refuge and fear factor has been introduced. Then, the existence and stability of fixed points of the model are analyzed. Next, the bifurcation behaviors are discussed, both flip bifurcation and Neimark-Sacker bifurcation have been studied. Finally, some simulations are given to show the effectiveness of the theoretical results.  相似文献   

15.
该文建立了一类由Allee效应诱导的非光滑Filippov切换系统.运用Filippov系统的定性分析方法,从理论上研究了系统的滑动区域、滑动模态和各类平衡点的存在性.同时用数值方法研究了系统的滑动模态分支、边界焦点分支及全局动力学行为.研究发现:Allee效应的强度可使种群的动态不稳定,不利于濒危生物种群的管理.  相似文献   

16.
The purpose of this paper is twofold. First, we use Lagrange''s method and the generalized eigenvalue problem to study systems of two quadratic equations. We find exact conditions so the system can be codiagonalized and can have up to $4$ solutions. Second, we use this result to study homoclinic bifurcations for a periodically perturbed system. The homoclinic bifurcation is determined by $3$ bifurcation equations. To the lowest order, they are $3$ quadratic equations, which can be simplified by the codiagonalization of quadratic forms. We find that up to $4$ transverse homoclinic orbits can be created near the degenerate homoclinic orbit.  相似文献   

17.
18.
Duffing's equation with two external forcing terms have been discussed. The threshold values of chaotic motion under the periodic and quasi-periodic perturbations are obtained by using second-order averaging method and Melnikov's method. Numerical simulations not only show the consistence with the theoretical analysis but also exhibit the interesting bifurcation diagrams and the more new complex dynamical behaviors, including period-n (n=2,3,6,8) orbits, cascades of period-doubling and reverse period doubling bifurcations, quasi-periodic orbit, period windows, bubble from period-one to period-two, onset of chaos, hopping behavior of chaos, transient chaos, chaotic attractors and strange non-chaotic attractor, crisis which depends on the frequencies, amplitudes and damping. In particular, the second frequency plays a very important role for dynamics of the system, and the system can leave chaotic region to periodic motions by adjusting some parameter which can be considered as an control strategy of chaos. The computation of Lyapunov exponents confirm the dynamical behaviors.  相似文献   

19.
Recent manipulations on vertebrates showed that the fear of preda- tors, caused by prey after they perceived predation risk, could reduce the prey''s reproduction greatly. And it''s known that predator-prey systems with fear ef- fect exhibit very rich dynamics. On the other hand, incorporating the time delay into predator-prey models could also induce instability and oscillations via Hopf bifurcation. In this paper, we are interested in studying the com- bined effects of the fear effect and time delay on the dynamics of the classic Lotka-Volterra predator-prey model. It''s shown that the time delay can cause the stable equilibrium to become unstable, while the fear effect has a stabi- lizing effect on the equilibrium. In particular, the model loses stability when the delay varies and then regains its stability when the fear effect is stronger. At last, by using the normal form theory and center manifold argument, we derive explicit formulas which determine the stability and direction of periodic solutions bifurcating from Hopf bifurcation. Numerical simulations are carried to explain the mathematical conclusions.  相似文献   

20.
The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the system, such as the period-doubling bifurcation in periods 2, 4, 8 and 16, and quasi-periodic orbits and chaotic sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号