首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let {? i } i=∩ n be continuous real functions on the compact set M?R. We consider the problem of best uniform approximation of the function? by polynomials \(\sum\nolimits_{i = 1}^n {c_i \varphi _i }\) on M. Let V(?0, A) be a set of polynomials of best approximation on A ? M. We show that \(V(\varphi _0 ,M) = \mathop \cap \limits_{A_{n + 1} } V(\varphi _0 ,A_{n + 1} )\) , where An+1 represents all the possible sets of n+ 1 points {x1, ..., xn+1} in M, containing the characteristic set of the given problem of best approximation and for which the the rank of ∥?i ∥ (i=1, ...,n; j=1,..., n+1) is equal to n. This theorem is applied to a problem of uniform approximation where {? i } i=1 n is a weakly Chebyshev system.  相似文献   

2.
We consider a class of boundary value problems of the second order difference equation $$\Delta(r_{i-1}\Delta y_{i-1})-b_{i}y_{i}+\lambda a_{i}y_{i}=0,\quad 1\le i\le n,\ y_{0}=\alpha y_{n},\ y_{n+1}=\alpha y_{1}.$$ The class of problems considered includes those with antiperiodic, Dirichlet, and periodic boundary conditions. We focus on the structure of eigenvalues of this class of problems and comparisons of all eigenvalues as the coefficients {a i } i=1 n ,{b i } i=1 n , and {r i } i=0 n change.  相似文献   

3.
Let X be a real uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let T 1, T 2: CX be two uniformly L-Lipschitzian, generalized asymptotically quasi-nonexpansive non-self-mappings of C satisfying condition A′ with sequences {k n (i) } and {δ n (i) } ? [1, ∞),, i = 1, 2, respectively such that Σ n=1 (k n (i) ? 1) < ∞, Σ n=1 (i) δ n (i) < ∞, and F = F(T 1) ∩ F(T 2) ≠ ?. For an arbitrary x 1C, let {x n } be the sequence in C defined by $$ \begin{gathered} y_n = P\left( {\left( {1 - \beta _n - \gamma _n } \right)x_n + \beta _n T_2 \left( {PT_2 } \right)^{n - 1} x_n + \gamma _n v_n } \right), \hfill \\ x_{n + 1} = P\left( {\left( {1 - \alpha _n - \lambda _n } \right)y_n + \alpha _n T_1 \left( {PT_1 } \right)^{n - 1} x_n + \lambda _n u_n } \right), n \geqslant 1, \hfill \\ \end{gathered} $$ where {α n }, {β n }, {γ n } and {λ n } are appropriate real sequences in [0, 1) such that Σ n=1 ] γ n < ∞, Σ n=1 λ n < ∞, and {u n }, }v n } are bounded sequences in C. Then {x n } and {y n } converge strongly to a common fixed point of T 1 and T 2 under suitable conditions.  相似文献   

4.
Suppose{e i} i=1 n and{f i} i=1 n are symmetric bases of the Banach spacesE andF. Letd(E,F)≦C andd(E,l n 2 )≧n' for somer>0. Then there is a constantC r=Cr(C)>0 such that for alla i∈Ri=1,...,n $$C_r^{ - 1} \left\| {\sum\limits_{i = 1}^n {a_i e_i } } \right\| \leqq \left\| {\sum\limits_{i = 1}^n {a_i f_i } } \right\| \leqq C_r \left\| {\sum\limits_{i = 1}^n {a_i e_i } } \right\|$$ We also give a partial uniqueness of unconditional bases under more restrictive conditions.  相似文献   

5.
Let {α n | n be a sequence in the open unit disk in the complex plane and let $(\overline {\alpha _k } |\alpha _k | = - 1$ when α k =0. Let μ be a positive Borel measure on the unit circle, and let {φ n } n be the orthonormal sequence obtained by orthonormalization of the sequence {B n } n with respect to μ. Let {ψ n } n be the sequence of associated rational functions. Using the functions φ n , ψ n and certain conjugates of them, we obtain modified Padé-type approximants to the function $$F\mu (z) = \int\limits_{ - \pi }^\pi {\frac{{t + z}}{{t - z}}} d\mu (\theta ), (t = e^{i\theta } ).$$   相似文献   

6.
Let {X i , π k i , ω} be an inverse sequence and $X = \mathop {\lim }\limits_ \leftarrow \left\{ {X_i ,\pi _k^i ,\omega } \right\}$ . If each X i is hereditarily (resp. metaLindelöf, σ-metaLindelöf, σ-orthocompact, weakly suborthocompact, δθ-refinable, weakly θ-refinable, weakly δθ-refinable), then so is X.  相似文献   

7.
For series of random variables $\sum\limits_{k = 1}^\infty {a_k x_k }$ ,a K R 1, {X K } K=1 being an Ising system, i.e., for each n ≥ 2 the joint distribution of {X K } K=1 n has the form $$P_n (t_1 ,...,t_n ) = ch^{ - (n - 1)} J \cdot exp(J\sum\limits_{k - 1}^{n - 1} {t_k t_{k + 1} )\prod\limits_{k = 1}^n {\frac{1}{2}\delta (t_{k^{ - 1} }^2 ),J > 0} }$$ one obtains a criterion for almost everywhere convergence: $\sum\limits_{k = 1}^\infty {a_k^2< \infty }$ . The relation between the asymptotic behavior of large deviations of the sum and the rate of decrease of the sequence {ak} of the coefficients is investigated.  相似文献   

8.
In this paper, we first consider the existence of and the general expression for the solution to the constrained inverse eigenvalue problem defined as follows: given a generalized reflection matrix PR n×n , a set of complex n-vectors {x i } i=1 m , a set of complex numbers {λ i } i=1 m , and an s-by-s real matrix C 0, find an n-by-n real reflexive matrix C such that the s-by-s leading principal submatrix of C is C 0, and {x i } i=1 m and {λ i } i=1 m are the eigenvectors and eigenvalues of C, respectively. We are then concerned with the best approximation problem for the constrained inverse problem whose solution set is nonempty. That is, given an arbitrary real n-by-n matrix $\tilde{C}$ , find a matrix C which is the solution to the constrained inverse problem such that the distance between C and $\tilde{C}$ is minimized in the Frobenius norm. We give an explicit solution and a numerical algorithm to the best approximation problem. An illustrative experiment is also presented.  相似文献   

9.
Let K n h = (V, ( h V )) be the complete h-uniform hypergraph on vertex set V with ¦V¦ = n. Baranyai showed that K n h can be expressed as the union of edge-disjoint r-regular factors if and only if h divides rn and r divides \((_{h - 1}^{n - 1} )\) . Using a new proof technique, in this paper we prove that λK n h can be expressed as the union \(\mathcal{G}_1 \cup ... \cup \mathcal{G}_k \) of k edge-disjoint factors, where for 1≤ik, \(\mathcal{G}_i \) is r i -regular, if and only if (i) h divides r i n for 1≤ik, and (ii) \(\sum\nolimits_{i = 1}^k {r_i = \lambda (_{h - 1}^{n - 1} )} \) . Moreover, for any i (1≤ik) for which r i ≥2, this new technique allows us to guarantee that \(\mathcal{G}_i \) is connected, generalizing Baranyai’s theorem, and answering a question by Katona.  相似文献   

10.
Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach space E and let Π C be a sunny nonexpansive retraction from E onto C. Let the mappings ${T, S: C \to E}$ be γ 1-strongly accretive, μ 1-Lipschitz continuous and γ 2-strongly accretive, μ 2-Lipschitz continuous, respectively. For arbitrarily chosen initial point ${x^0 \in C}$ , compute the sequences {x k } and {y k } such that ${\begin{array}{ll} \quad y^k = \Pi_C[x^k-\eta S(x^k)],\ x^{k+1} = (1-\alpha^k)x^k+\alpha^k\Pi_C[y^k-\rho T(y^k)],\quad k\geq 0, \end{array}}$ where {α k } is a sequence in [0,1] and ρ, η are two positive constants. Under some mild conditions, we prove that the sequences {x k } and {y k } converge to x* and y*, respectively, where (x*, y*) is a solution of the following system of variational inequality problems in Banach spaces: ${\left\{\begin{array}{l}\langle \rho T(y^*)+x^*-y^*,j(x-x^*)\rangle\geq 0, \quad\forall x \in C,\\langle \eta S(x^*)+y^*-x^*,j(x-y^*)\rangle\geq 0,\quad\forall x \in C.\end{array}\right.}$ Our results extend the main results in Verma (Appl Math Lett 18:1286–1292, 2005) from Hilbert spaces to Banach spaces. We also obtain some corollaries which include some results in the literature as special cases.  相似文献   

11.
In this note we find sufficient conditions for uniqueness of expansion of any two functionsf(z) and g(z) which are analytic in the circle ¦ z ¦ < R (0 < R <∞) in series $$f(z) = \sum\nolimits_{n = 0}^\infty {(a_n f_2 (z) + b_n g_n (z))}$$ and $$g_i (z) = \sum\nolimits_{n = 0}^\infty {a_n \lambda _n f_n (z)} + b_n \mu _n f_n (x)),$$ which are convergent in the compact topology, where (f n {z} n=0 and {g} n=0 are given sequences of functions which are analytic in the same circle while {λ n } n=0 and {μ n } n=0 are fixed sequences of complex numbers. The assertion obtained here complements a previously known result of M. G. Khaplanov and Kh. R. Rakhmatov.  相似文献   

12.
We investigate the boundedness nature of positive solutions of the difference equation $$ x_{n + 1} = max\left\{ {\frac{{A_n }} {{X_n }},\frac{{B_n }} {{X_{n - 2} }}} \right\},n = 0,1,..., $$ where {A n } n=0 and {B n } n=0 are periodic sequences of positive real numbers.  相似文献   

13.
The main result of this paper is the following: IfX is a compact two dimensional metric space, and {φ i} i = 1/4 are four functions inC(X), then there exists a functionf inC(X) which cannot be represented in the form: $$f(x) = \sum\limits_{i = 1}^4 {g_\iota (\varphi _i (x))} $$ , with $$g_\iota \in C(R)$$ .  相似文献   

14.
Let C be a nonempty closed convex subset of a real Hilbert space H. Let Q:CC be a fixed contraction and S,T:CC be two nonexpansive mappings such that Fix(T)≠?. Consider the following two-step iterative algorithm: $$\begin{array}{@{}rll}x_{n+1}&=&\alpha_{n}Qx_{n}+(1-\alpha_{n})Ty_{n},\\[1.5mm]y_{n}&=&\beta_{n}Sx_{n}+(1-\beta_{n})x_{n},\quad n\geq0.\end{array}$$ It is proven that under appropriate conditions, the above iterative sequence {x n } converges strongly to $\tilde{x}\in \mathrm{Fix}(T)$ which solves some variational inequality depending on a given criterion S, namely: find $\tilde{x}\in H$ ; $0\in (I-S)\tilde{x}+N_{\mathrm{Fix}(T)}\tilde{x}$ , where N Fix(T) denotes the normal cone to the set of fixed points of T.  相似文献   

15.
The spectral problem in a bounded domain Ω?Rn is considered for the equation Δu= λu in Ω, ?u=λ?υ/?ν on the boundary of Ω (ν the interior normal to the boundary, Δ, the Laplace operator). It is proved that for the operator generated by this problem, the spectrum is discrete and consists of two series of eigenvalues {λ j 0 } j=1 and {λ j } j=1 , converging respectively to 0 and +∞. It is also established that $$N^0 (\lambda ) = \sum\nolimits_{\operatorname{Re} \lambda _j^0 \geqslant 1/\lambda } {1 \approx const} \lambda ^{n - 1} , N^\infty (\lambda ) \equiv \sum\nolimits_{\operatorname{Re} \lambda _j^\infty \leqslant \lambda } {1 \approx const} \lambda ^{n/1} .$$ The constants are explicitly calculated.  相似文献   

16.
Let \(\chi _0^n = \left\{ {X_t } \right\}_0^n \) be a martingale such that 0≦Xi≦1;i=0, …,n. For 0≦p≦1 denote by ? p n the set of all such martingales satisfying alsoE(X0)=p. Thevariation of a martingale χ 0 n is denoted byV 0 n and defined by \(V(\chi _0^n ) = E\left( {\sum {_{l = 0}^{n - 1} } \left| {X_{l + 1} - X_l } \right|} \right)\) . It is proved that $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\mathop {Sup}\limits_{x_0^n \in \mathcal{M}_p^n } \left[ {\frac{1}{{\sqrt n }}V(\chi _0^n )} \right]} \right\} = \phi (p)$$ , where ?(p) is the well known normal density evaluated at itsp-quantile, i.e. $$\phi (p) = \frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi _p^2 ) where \int_{ - \alpha }^{x_p } {\frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi ^2 )} dx = p$$ . A sequence of martingales χ 0 n ,n=1,2, … is constructed so as to satisfy \(\lim _{n \to \infty } (1/\sqrt n )V(\chi _0^n ) = \phi (p)\) .  相似文献   

17.
Let R=GR(4,m) be the Galois ring of cardinality 4m and let T be the Teichmüller system of R. For every map λ of T into { -1,+1} and for every permutation Π of T, we define a map φ λ Π of Rinto { -1,+1} as follows: if xR and if x=a+2b is the 2-adic representation of x with xT and bT, then φ λ Π (x)=λ(a)+2Tr(Π(a)b), where Tr is the trace function of R . For i=1 or i=-1, define D i as the set of x in R such thatφ λ Π =i. We prove the following results: 1) D i is a Hadamard difference set of (R,+). 2) If φ is the Gray map of R into ${\mathbb{F}}_2^{2m}$ , then (D i) is a difference set of ${\mathbb{F}}_2^{2m}$ . 3) The set of D i and the set of φ(D i) obtained for all maps λ and Π, both are one-to-one image of the set of binary Maiorana-McFarland difference sets in a simple way. We also prove that special multiplicative subgroups of R are difference sets of kind D i in the additive group of R. Examples are given by means of morphisms and norm in R.  相似文献   

18.
Let E be a real reflexive strictly convex Banach space which has uniformly Gâteaux differentiable norm. Let ${\mathcal{S} = \{T(s): 0 \leq s < \infty\}}$ be a nonexpansive semigroup on E such that ${Fix(\mathcal{S}) := \cap_{t\geq 0}Fix( T(t) ) \not= \emptyset}$ , and f is a contraction on E with coefficient 0 <  α <  1. Let F be δ-strongly accretive and λ-strictly pseudo-contractive with δ + λ >  1 and ${0 < \gamma < \min\left\{\frac{\delta}{\alpha}, \frac{1-\sqrt{ \frac{1-\delta}{\lambda} }}{\alpha} \right\} }$ . When the sequences of real numbers {α n } and {t n } satisfy some appropriate conditions, the three iterative processes given as follows : $${\left.\begin{array}{ll}{x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n F)T(t_n)x_n,\quad n\geq 0,}\\ {y_{n+1} = \alpha_n \gamma f(T(t_n)y_n) + (I - \alpha_n F)T(t_n)y_n,\quad n\geq 0,}\end{array}\right.}$$ and $$ z_{n+1} = T(t_n)( \alpha_n \gamma f(z_n) + (I - \alpha_n F)z_n),\quad n\geq 0 $$ converge strongly to ${\tilde{x}}$ , where ${\tilde{x}}$ is the unique solution in ${Fix(\mathcal{S})}$ of the variational inequality $${ \langle (F - \gamma f)\tilde {x}, j(x - \tilde{x}) \rangle \geq 0,\quad x\in Fix(\mathcal{S}).}$$ Our results extend and improve corresponding ones of Li et al. (Nonlinear Anal 70:3065–3071, 2009) and Chen and He (Appl Math Lett 20:751–757, 2007) and many others.  相似文献   

19.
In this paper we introduce a new tail probability version of Wald's lemma for expectations of randomly stopped sums of independent random variables. We also make a connection between the works of Klass(18, 19) and Gundy(11) on Wald's lemma. In making the connection, we develop new Lenglart and Good Lambda inequalities comparing the tails of various types of adapted processes. As a consequence of our Good Lambda inequalities we include the following result. Let {d i }, {e i } be two sequences of variables adapted to the same increasing sequence of σ-fields ? n ↗?, (e.g., ? n =σ({d i } i=1 n , {E i } i=1 n ), and letN?∞ be a stopping time adapted to {? n }. Then for allp>0, there exists a constant 0<C p <∞ depending onp only, such that $$\mathop {\overline {\lim } }\limits_\lambda \lambda ^p P\left( {\mathop {\sup }\limits_{1 \leqslant n \leqslant N} \left\| {\sum\limits_{i = 1}^n {d_i } } \right\| > \lambda } \right) \leqslant C_p \mathop {\overline {\lim } }\limits_\lambda \lambda ^p P\left( {\mathop {\sup }\limits_{1 \leqslant n \leqslant N} \left\| {\sum\limits_{i = 1}^n {e_i } } \right\| > \lambda } \right)$$ This result holds when the sequences are real, tangent, and either conditionally symmetric or nonnegative, or alternatively, if {d i } is a sequence of independent random variables and {e i } is an independent copy of {d i }, withN a stopping time adapted to the filtration generated by {d i } only. Other examples include Hilbert space valued differentially subordinate conditionally symmetric martingale differences. The result is true for more general operators applied to sequences as shown by an example comparing the square function of a conditionally symmetric sequence to the maximum of its absolute partial sums.  相似文献   

20.
We obtain recurrent relations for bounded solutions of the system of equations $$X_k - \sum\limits_{n = 0}^\infty {\frac{{(k + n)!}}{{k!n!}}} \alpha ^{k + n + 1} x_n = f_{k,} k = 0,1,..., \alpha \in (0,1/2),$$ with right-hand sides {f k } k=0 ={δ kj } k=0 ,j=0,1,..., where δ kj is the Kronecker symbol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号