首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We study the decomposition of left regular ordered semigroups into left regular components and the decomposition of intra-regular ordered semigroups into simple or intra-regular components, adding some additional information to the results considered in [KEHAYOPULU, N.: On left regular ordered semigroups, Math. Japon. 35 (1990), 1057–1060] and [KEHAYOPULU, N.: On intra-regular ordered semigroups, Semigroup Forum 46 (1993), 271–278]. We prove that an ordered semigroup S is left regular if and only if it is a semilattice (or a complete semilattice) of left regular semigroups, equivalently, it is a union of left regular subsemigroups of S. Moreover, S is left regular if and only if it is a union of pairwise disjoint left regular subsemigroups of S. The right analog also holds. The same result is true if we replace the words “left regular” by “intraregular”. Moreover, an ordered semigroup is intra-regular if and only if it is a semilattice (or a complete semilattice) of simple semigroups. On the other hand, if an ordered semigroup is a semilattice (or a complete semilattice) of left simple semigroups, then it is left regular, but the converse statement does not hold in general. Illustrative examples are given.  相似文献   

2.
3.
We give characterizations of different classes of ordered semigroups by using intuitionistic fuzzy ideals. We prove that an ordered semigroup is regular if and only if every intuitionistic fuzzy left (respectively, right) ideal of S is idempotent. We also prove that an ordered semigroup S is intraregular if and only if every intuitionistic fuzzy two-sided ideal of S is idempotent. We give further characterizations of regular and intra-regular ordered semigroups in terms of intuitionistic fuzzy left (respectively, right) ideals. In conclusion of this paper we prove that an ordered semigroup S is left weakly regular if and only if every intuitionistic fuzzy left ideal of S is idempotent.  相似文献   

4.
We characterize the ordered semigroups which are decomposable into simple and regular components. We prove that each ordered semigroup which is both regular and intra-regular is decomposable into simple and regular semigroups, and the converse statement also holds. We also prove that an ordered semigroup S is both regular and intra-regular if and only if every bi-ideal of S is an intra-regular (resp. semisimple) subsemigroup of S. An ordered semigroup S is both regular and intra-regular if and only if the left (resp. right) ideals of S are right (resp. left) quasi-regular subsemigroups of S. We characterize the chains of simple and regular semigroups, and we prove that S is a complete semilattice of simple and regular semigroups if and only if S is a semilattice of simple and regular semigroups. While a semigroup which is both π-regular and intra-regular is a semilattice of simple and regular semigroups, this does not hold in ordered semigroups, in general.  相似文献   

5.
We show that if Y is a subsemilattice of a finite semilattice indecomposable semigroup S then \({|Y|\leq 2\left\lfloor \frac{|S|-1}{4}\right\rfloor+1}\). We also characterize finite semilattice indecomposable semigroups S which contain a subsemilattice Y with \({|S|=4k+1}\) and \({|Y|=2\left\lfloor \frac{|S|-1}{4} \right\rfloor+1=2k+1}\). They are special inverse semigroups. Our investigation is based on our new result proved in this paper which characterizes finite semilattice indecomposable semigroups with a zero by using only the properties of its semigroup algebra.  相似文献   

6.
In this paper we investigate how the combinatorial property finite derivation type (FDT) is preserved in a semilattice of semigroups. We prove that if $S= \mathcal{S}[Y,S_{\alpha}]$ is a semilattice of semigroups such that Y is finite and each S ?? (????Y) has FDT, then S has FDT. As a consequence we can show that a strong semilattice of semigroups $\mathcal{S}[Y,S_{\alpha},\lambda_{\alpha,\beta}]$ has FDT if and only if Y is finite and every semigroup S ?? (????Y) has FDT.  相似文献   

7.
Nik Stopar 《Semigroup Forum》2012,85(2):322-336
In this paper we investigate the ascending chain conditions on principal left and right ideals for semidirect products of semigroups and show how this is connected to the corresponding problem for rings of skew generalized power series. Let S be a left cancellative semigroup with a unique idempotent e, T a right cancellative semigroup with an idempotent f and $\omega: T \to \operatorname {End}(S)$ a semigroup homomorphism such that ??(f)=id S . We show that in this case the semidirect product S? ?? T satisfies the ascending chain condition for principal left ideals (resp. right ideals) if and only if S and T satisfy the ascending chain condition for principal left ideals (resp. right ideals and $\operatorname {Im}\omega(t)$ is closed for complete inverses for all t??T). We also give several examples to show that for more general semigroups these implications may not hold.  相似文献   

8.
A semigroupS satisfiesPPn, thepermutation property of degree n (n≥2) if every product ofn elements inS remains invariant under some nontrivial permutation of its factors. It is shown that a semigroup satisfiesPP3 if and only if it contains at most one nontrivial commutator. Further a regular semigroup is a semilattice ofPP3 right or left groups, and a subdirect product ofPP3 semigroups of a simple type. A negative answer to a question posed by Restivo and Reutenauer is provided by a suitablePP3 group.  相似文献   

9.
《代数通讯》2013,41(6):2461-2479
Superabundant semigroups are generalizations of completely regular semigroups written the class of abundant semigroups. It has been shown by Fountain that an abundant semigroup is superabundant if and only if it is a semilattice of completely J *-simple semigroups. Reilly and Petrich called a semigroup S cryptic if the Green's relation H is a congruence on S. In this paper, we call a superabundant semigroup S a regular crypto semigroup if H * is a congruence on S such that S/H * is a regular band. It will be proved that a superabundant semigroup S is a regular crypto semigroup if and only if S is a refined semilattice of completely J *-simple semigroups. Thus, regular crypto semigroups are generalization of the cryptic semigroups as well as abundant semigroups.  相似文献   

10.
LetR be a ring with identity,S be a semigroup with the set of idempotentsE(S), and denote (E(S)) for the subsemigroup ofS generated byE(S). In this paper, we prove that ifS is a semilattice of completely 0-simple semigroups and completely simple semigroups, then the semigroup ringRS possesses an identity iff so doesR(E(S)); especially, the result is true forS being a completely regular semigroup.  相似文献   

11.
A U-abundant semigroup S in which every H-class of S contains an element in the set of projections U of S is said to be a U-superabundant semigroup.This is an analogue of regular semigroups which are unions of groups and an analogue of abundant semigroups which are superabundant.In 1941,Clifford proved that a semigroup is a union of groups if and only if it is a semilattice of completely simple semigroups.Several years later,Fountain generalized this result to the class of superabundant semigroups.In this p...  相似文献   

12.
In Billhardt et al. (Semigroup Forum 79:101–118, 2009) the authors introduced the notion of an associate inverse subsemigroup of a regular semigroup, extending the concept of an associate subgroup of a regular semigroup, first presented in Blyth et al. (Glasgow Math. J. 36:163–171, 1994). The main result of the present paper, Theorem 2.15, establishes that a regular semigroup S with an associate inverse subsemigroup S ? satisfies three simple identities if and only if it is isomorphic to a generalised Rees matrix semigroup M(T;A,B;P), where T is a Clifford semigroup, A and B are bands, with common associate inverse subsemigroup E(T) satisfying the referred identities, and P is a sandwich matrix satisfying some natural conditions. If T is a group and A, B are left and right zero semigroups, respectively, then the structure described provides a usual Rees matrix semigroup with normalised sandwich matrix, thus generalising the Rees matrix representation for completely simple semigroups.  相似文献   

13.
14.
Two-sided restriction semigroups and their handed versions arise from a number of sources. Attracting a deal of recent interest, they appear under a plethora of names in the literature. The class of left restriction semigroups essentially provides an axiomatisation of semigroups of partial mappings. It is known that this class admits proper covers, and that proper left restriction semigroups can be described by monoids acting on the left of semilattices. Any proper left restriction semigroup embeds into a semidirect product of a semilattice by a monoid, and moreover, this result is known in the wider context of left restriction categories. The dual results hold for right restriction semigroups.What can we say about two-sided restriction semigroups, hereafter referred to simply as restriction semigroups? Certainly, proper covers are known to exist. Here we consider whether proper restriction semigroups can be described in a natural way by monoids acting on both sides of a semilattice.It transpires that to obtain the full class of proper restriction semigroups, we must use partial actions of monoids, thus recovering results of Petrich and Reilly and of Lawson for inverse semigroups and ample semigroups, respectively. We also describe the class of proper restriction semigroups such that the partial actions can be mutually extendable to actions. Proper inverse and free restriction semigroups (which are proper) have this form, but we give examples of proper restriction semigroups which do not.  相似文献   

15.
A semigroup S is called a Clifford semigroup if it is completely regular and inverse. In this paper, some relations related to the least Clifford semigroup congruences on completely regular semigroups are characterized. We give the relation between Y and ξ on completely regular semigroups and get that Y * is contained in the least Clifford congruence on completely regular semigroups generally. Further, we consider the relation Y *, Y, ν and ε on completely simple semigroups and completely regular semigroups. This work is supported by Leading Academic Discipline Project of Shanghai Normal University, Project Number: DZL803 and General Scientific Research Project of Shanghai Normal University, No. SK200707.  相似文献   

16.
Zhu (Semigroup Forum 84(3), 144–156, 2012) investigated some combinatorial properties of generalized Cayley graphs of semigroups. In Remark 3.8 of (Zhu, Semigroup Forum 84(3), 144–156, 2012), Zhu proposed the following question: It may be interesting to characterize semigroups S such that Cay(S,ω l )=Cay(S,ω r ). In this short note, we prove that for any regular semigroup S, Cay(S,ω l )=Cay(S,ω r ) if and only if S is a Clifford semigroup.  相似文献   

17.
A semigroup S is called a weakly commutative semigroup if, for every a,bS, there is a positive integer n such that (ab) n SabS. A semigroup S is called archimedean if, for every a,bS, there are positive integers m and n such that a n SbS and b m SaS. It is known that every weakly commutative semigroup is a semilattice of weakly commutative archimedean semigroups. A semigroup S is called a weakly separative semigroup if, for every a,bS, the assumption a 2=ab=b 2 implies a=b. In this paper we show that a weakly commutative semigroup is weakly separative if and only if its archimedean components are weakly cancellative. This result is a generalization of Theorem 4.16 of Clifford and Preston (The Algebraic Theory of Semigroups, Am. Math. Soc., Providence, 1961).  相似文献   

18.
In this paper, the concept of (∈, ∈ ∨q k )-fuzzy ideals of an ordered semigroup S is introduced by the ordered fuzzy points of S, and related properties are investigated. Furthermore, we introduce the concept of prime (∈, ∈ q k )-fuzzy ideals of ordered semigroups, and give some characterizations of them. As an application results of this paper, the corresponding results in ordinary semigroups can be also obtained by moderate modification.  相似文献   

19.
The derivation problem for a locally compact group G asserts that each bounded derivation from L 1(G) to L 1(G) is implemented by an element of M(G). Recently a simple proof of this result was announced. We show that basically the same argument with some extra manipulations with idempotents solves the module derivation problem for inverse semigroups, asserting that for an inverse semigroup S with set of idempotents E and maximal group homomorphic image G S , if E acts on S trivially from the left and by multiplication from the right, any bounded module derivation from ? 1(S) to ? 1(G S ) is inner.  相似文献   

20.
Matrices of bisimple regular semigroups   总被引:1,自引:0,他引:1  
A semigroup S is a matrix of subsemigroups S, i ε I, μ ε M if the S form a partition of S and SS≤S for all i, j in I, μ, ν in M. If all the S are bisimple regular semigroups, then S is a bisimple regular semigroup. Properties of S are considered when the S are bisimple and regular; for example, if S is orthodox then each element of S has an inverse in every component S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号